Share:
Share this content in WeChat
X
Review
Research progress of multiparameter MRI in default mode network damage in patients with obstructive sleep apnea
HUANG Qiang  MA Hongwei  WANG Yi  SU Jing  XIN Zhiwei  ZHANG Qing 

Cite this article as: HUANG Q, MA H W, WANG Y, et al. Research progress of multiparameter MRI in default mode network damage in patients with obstructive sleep apnea[J]. Chin J Magn Reson Imaging, 2025, 16(1): 187-192. DOI:10.12015/issn.1674-8034.2025.01.030.


[Abstract] Obstructive sleep apnea (OSA) is characterized by apnea or reduced airflow during sleep due to upper airway obstruction, manifesting as sleep fragmentation and intermittent hypoxia. The default mode network (DMN) is a brain network that remains active during the resting state and is involved in cognitive processes such as self-reflection, memory, and intrinsic thought. Damage to the DMN is a critical factor in the development of cognitive impairment in OSA. Multiparameter MRI plays a significant role in comprehensively assessing structural damage and functional impairment of the DMN. Therefore, this review aims to summarize recent advances in research on DMN impairment in OSA using multiparameter MRI, with the intention of providing insights into the pathological mechanisms underlying cognitive impairment in OSA.
[Keywords] obstructive sleep apnea;default mode network;cognitive impairment;multiparameter magnetic resonance imaging;magnetic resonance imaging

HUANG Qiang1   MA Hongwei1   WANG Yi1   SU Jing1   XIN Zhiwei2   ZHANG Qing1*  

1 Department of Radiology, Zhongshan Hospital Affiliated to Dalian University, Dalian 116001, China

2 Department of Imaging, Liaoning Provincial Corps Hospital of Chinese People' s Armed Police Force, Shenyang 110034, China

Corresponding author: ZHANG Q, E-mail: zhangqingsmile@163.com

Conflicts of interest   None.

Received  2024-10-08
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.030
Cite this article as: HUANG Q, MA H W, WANG Y, et al. Research progress of multiparameter MRI in default mode network damage in patients with obstructive sleep apnea[J]. Chin J Magn Reson Imaging, 2025, 16(1): 187-192. DOI:10.12015/issn.1674-8034.2025.01.030.

[1]
LYONS M M, BHATT N Y, PACK A I, et al. Global burden of sleep-disordered breathing and its implications[J]. Respirology, 2020, 25(7): 690-702. DOI: 10.1111/resp.13838.
[2]
RAICHLE M E, MACLEOD A M, SNYDER A Z, et al. A default mode of brain function[J]. Proc Natl Acad Sci U S A, 2001, 98(2): 676-682. DOI: 10.1073/pnas.98.2.676.
[3]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[4]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[5]
ZHANG X, ZHOU H, LIU H, et al. Role of oxidative stress in the occurrence and development of cognitive dysfunction in patients with obstructive sleep apnea syndrome[J]. Mol Neurobiol, 2024, 61(8): 5083-5101. DOI: 10.1007/s12035-023-03899-3.
[6]
LAVALLE S, MASIELLO E, IANNELLA G, et al. Unraveling the complexities of oxidative stress and inflammation biomarkers in obstructive sleep apnea syndrome: A comprehensive review[J/OL]. Life (Basel), 2024, 14(4): 425 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/38672697/. DOI: 10.3390/life14040425.
[7]
WANG H, WANG X, SHEN Y, et al. SENP1 modulates chronic intermittent hypoxia-induced inflammation of microglia and neuronal injury by inhibiting TOM1 pathway[J/OL]. Int Immunopharmacol, 2023, 119: 110230 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/37137262/. DOI: 10.1016/j.intimp.2023.110230.
[8]
VERSELE R, SEVIN E, GOSSELET F, et al. TNF-α and IL-1β Modulate Blood-Brain Barrier Permeability and Decrease Amyloid-β Peptide Efflux in a Human Blood-Brain Barrier Model[J/OL]. Int J Mol Sci, 2022, 23(18): 10235 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36142143/. DOI: 10.3390/ijms231810235.
[9]
SHUVALOVA M, DMITRIEVA A, BELOUSOV V, et al. The role of reactive oxygen species in the regulation of the blood-brain barrier[J/OL]. Tissue Barriers, 2024: 2361202 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/38808582/. DOI: 10.1080/21688370.2024.2361202.
[10]
PARHIZKAR S, GENT G, CHEN Y, et al. Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice[J/OL]. Sci Transl Med, 2023, 15(693): eade6285 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/37099634/. DOI: 10.1126/scitranslmed.ade6285.
[11]
HAN F, LIU X, MAILMAN R B, et al. Resting-state global brain activity affects early β-amyloid accumulation in default mode network[J/OL]. Nat Commun, 2023, 14(1): 7788 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/38012153/. DOI: 10.1038/s41467-023-43627-y.
[12]
ANDRÉ C, REHEL S, KUHN E, et al. Association of Sleep-Disordered Breathing With Alzheimer Disease Biomarkers in Community-Dwelling Older Adults: A Secondary Analysis of a Randomized Clinical Trial[J]. JAMA Neurol, 2020, 77(6): 716-724. DOI: 10.1001/jamaneurol.2020.0311.
[13]
CHEN L, FAN X, LI H, et al. Topological Reorganization of the Default Mode Network in Severe Male Obstructive Sleep Apnea[J/OL]. Front Neurol, 2018, 9: 363 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/29951028/. DOI: 10.3389/fneur.2018.00363.
[14]
SHU Y, LIU X, YU P, et al. Inherent regional brain activity changes in male obstructive sleep apnea with mild cognitive impairment: A resting-state magnetic resonance study[J/OL]. Front Aging Neurosci, 2022, 14: 1022628 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36389072/. DOI: 10.3389/fnagi.2022.1022628.
[15]
MARTINEZ VILLAR G, DANEAULT V, MARTINEAU-DUSSAULT M-È, et al. Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea[J/OL]. Front Neurol, 2023, 14: 1215882 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/37470008/. DOI: 10.3389/fneur.2023.1215882.
[16]
ZHOU L, LIU G, LUO H, et al. Aberrant Hippocampal Network Connectivity Is Associated With Neurocognitive Dysfunction in Patients With Moderate and Severe Obstructive Sleep Apnea[J/OL]. Front Neurol, 2020, 11: 580408 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/33362692/. DOI: 10.3389/fneur.2020.580408.
[17]
YU H, CHEN L, LI H, et al. Abnormal resting-state functional connectivity of amygdala subregions in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2019, 15: 977-987. DOI: 10.2147/NDT.S191441.
[18]
ZHANG Q, QIN W, HE X, et al. Functional disconnection of the right anterior insula in obstructive sleep apnea[J]. Sleep Med, 2015, 16(9): 1062-1070. DOI: 10.1016/j.sleep.2015.04.018.
[19]
SCHIMMELPFENNIG J, TOPCZEWSKI J, ZAJKOWSKI W, et al. The role of the salience network in cognitive and affective deficits[J/OL]. Front Hum Neurosci, 2023, 17: 1133367 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/37020493/. DOI: 10.3389/fnhum.2023.1133367.
[20]
LI L, LIU Y, SHU Y, et al. Altered functional connectivity of cerebellar subregions in male patients with obstructive sleep apnea: A resting-state fMRI study[J]. Neuroradiology, 2024, 66(6): 999-1012. DOI: 10.1007/s00234-024-03356-5.
[21]
PARK H R, CHA J, JOO E Y, et al. Altered cerebrocerebellar functional connectivity in patients with obstructive sleep apnea and its association with cognitive function[J/OL]. Sleep, 2022, 45(1): zsab209 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/34432059/. DOI: 10.1093/sleep/zsab209.
[22]
HE Y, SHEN J, WANG X, et al. Preliminary study on brain resting-state networks and cognitive impairments of patients with obstructive sleep apnea-hypopnea syndrome[J/OL]. BMC Neurol, 2022, 22(1): 456 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36476321/. DOI: 10.1186/s12883-022-02991-w.
[23]
CHANG Y T, CHEN Y C, CHEN Y L, et al. Functional connectivity in default mode network correlates with severity of hypoxemia in obstructive sleep apnea[J/OL]. Brain Behav, 2020, 10(12): e01889 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/33135393/. DOI: 10.1002/brb3.1889.
[24]
SONG X, ROY B, VACAS S, et al. Brain regional homogeneity changes after short-term positive airway pressure treatment in patients with obstructive sleep apnea[J]. Sleep Med, 2022, 91: 12-20. DOI: 10.1016/j.sleep.2022.02.005.
[25]
LIN W C, HSU T W, LU C H, et al. Alterations in sympathetic and parasympathetic brain networks in obstructive sleep apnea[J]. Sleep Med, 2020, 73: 135-142. DOI: 10.1016/j.sleep.2020.05.038.
[26]
JI T, LI X, CHEN J, et al. Brain function in children with obstructive sleep apnea: a resting-state fMRI study[J/OL]. Sleep, 2021, 44(8): zsab047 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/33675225/. DOI: 10.1093/sleep/zsab047.
[27]
BAI J, WEN H, TAI J, et al. Altered Spontaneous Brain Activity Related to Neurologic and Sleep Dysfunction in Children With Obstructive Sleep Apnea Syndrome[J/OL]. Front Neurosci, 2021, 15: 595412 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/34867137/. DOI: 10.3389/fnins.2021.595412.
[28]
LI X Y, YUAN L X, DING C C, et al. Convergent Multimodal Imaging Abnormalities in the Dorsal Precuneus in Subjective Cognitive Decline[J]. J Alzheimers Dis, 2024, 101(2): 589-601. DOI: 10.3233/JAD-231360.
[29]
LI H, LI L, KONG L, et al. Frequency-Specific Regional Homogeneity Alterations and Cognitive Function in Obstructive Sleep Apnea Before and After Short-Term Continuous Positive Airway Pressure Treatment[J]. Nat Sci Sleep, 2021, 13: 2221-2238. DOI: 10.2147/NSS.S344842.
[30]
PENG D C, DAI X J, GONG H H, et al. Altered intrinsic regional brain activity in male patients with severe obstructive sleep apnea: a resting-state functional magnetic resonance imaging study[J]. Neuropsychiatr Dis Treat, 2014, 10: 1819-1826. DOI: 10.2147/NDT.S67805.
[31]
LIU W T, HUANG H T, HUNG H Y, et al. Continuous Positive Airway Pressure Reduces Plasma Neurochemical Levels in Patients with OSA: A Pilot Study[J/OL]. Life (Basel), 2023, 13(3): 613 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36983769/. DOI: 10.3390/life13030613.
[32]
BISWAL B, YETKIN F Z, HAUGHTON V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J/OL]. Magn Reson Med, 1995, 34(4): 537-541. DOI: 10.1002/mrm.1910340409.
[33]
ZOU Q H, ZHU C Z, YANG Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[34]
ZENG Y, SHU Y, LIU X, et al. Frequency-specific alterations in intrinsic low-frequency oscillations in newly diagnosed male patients with obstructive sleep apnea[J/OL]. Front Neurosci, 2022, 16: 987015 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36248662/. DOI: 10.3389/fnins.2022.987015.
[35]
LI H, JIA X, LI Y, et al. Aberrant Amplitude of Low-Frequency Fluctuation and Degree Centrality within the Default Mode Network in Patients with Vascular Mild Cognitive Impairment[J/OL]. Brain Sci, 2021, 11(11): 1534 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/34827533/. DOI: 10.3390/brainsci11111534.
[36]
ZHANG H, YANG S Y, QIAO Y, et al. Default mode network mediates low-frequency fluctuations in brain activity and behavior during sustained attention[J]. Hum Brain Mapp, 2022, 43(18): 5478-5489. DOI: 10.1002/hbm.26024.
[37]
HUANG Y, SHEN C, ZHAO W, et al. Genes Associated with Altered Brain Structure and Function in Obstructive Sleep Apnea[J]. Biomedicines, 2023, 12(1): 15 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/38275376/. DOI: 10.3390/biomedicines12010015.
[38]
SANTARNECCHI E, SPRUGNOLI G, SICILIA I, et al. Thalamic altered spontaneous activity and connectivity in obstructive sleep apnea syndrome[J]. J Neuroimaging, 2022, 32(2): 314-327. DOI: 10.1111/jon.12952.
[39]
SUN Y, YANG S X, XIE M, et al. Aberrant amplitude of low-frequency fluctuations in different frequency bands and changes after one-night positive airway pressure treatment in severe obstructive sleep apnea[J/OL]. Front Neurol, 2022, 13: 985321 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36071907/. DOI: 10.3389/fneur.2022.985321.
[40]
SACHDEV P S. The default mode network, depression and Alzheimer's disease[J]. Int Psychogeriatr, 2022, 34(8): 675-678. DOI: 10.1017/S1041610222000539.
[41]
WANG Z, XIN J, WANG Z, et al. Brain functional network modeling and analysis based on fMRI: a systematic review[J]. Cogn Neurodyn, 2021, 15(3): 389-403. DOI: 10.1007/s11571-020-09630-5.
[42]
CHEN L T, FAN X L, LI H J, et al. Aberrant brain functional connectome in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2018, 14: 1059-1070. DOI: 10.2147/NDT.S161085.
[43]
LI H, LI L, SHAO Y, et al. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis[J/OL]. PLoS One, 2016, 11(10): e0164031 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/27723821/. DOI: 10.1371/journal.pone.0164031.
[44]
HUANG Y, SHEN C, ZHAO W, et al. Multilayer network analysis of dynamic network reconfiguration in patients with moderate-to-severe obstructive sleep apnea and its association with neurocognitive function[J]. Sleep Med, 2023, 112: 333-341. DOI: 10.1016/j.sleep.2023.10.035.
[45]
WANG J, JI L R, CHENG C H, et al. [Analysis of dynamic functional connectivity states and influencing factors of brain network in male patients with obstructive sleep apnea][J]. Zhonghua Yi Xue Za Zhi, 2023, 103(48): 3938-3945. DOI: 10.3760/cma.j.cn112137-20230720-00040.
[46]
BYUN J I, JAHNG G H, RYU C W, et al. Altered intrinsic brain functional network dynamics in moderate-to-severe obstructive sleep apnea[J]. Sleep Med, 2023, 101: 550-557. DOI: 10.1016/j.sleep.2022.12.003.
[47]
LI H, LI L, LI K, et al. Abnormal dynamic functional network connectivity in male obstructive sleep apnea with mild cognitive impairment: A data-driven functional magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2022, 14: 977917 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36389084/. DOI: 10.3389/fnagi.2022.977917.
[48]
VAN DEN HEUVEL M P, MANDL R C W, KAHN R S, et al. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain[J]. Hum Brain Mapp, 2009, 30(10): 3127-3141. DOI: 10.1002/hbm.20737.
[49]
LEE M-H, YUN C-H, MIN A, et al. Altered structural brain network resulting from white matter injury in obstructive sleep apnea[J/OL]. Sleep, 2019, 42(9): zsz120 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/31260533/. DOI: 10.1093/sleep/zsz120.
[50]
LI Y, WEN H, LI H, et al. Characterisation of brain microstructural alterations in children with obstructive sleep apnea syndrome using diffusion kurtosis imaging[J/OL]. J Sleep Res, 2023, 32(2): e13710 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36377256/. DOI: 10.1111/jsr.13710.
[51]
LI Y, WEN H, LI W, et al. Diffusion kurtosis imaging tractography reveals disrupted white matter structural networks in children with obstructive sleep apnea syndrome[J]. Brain Imaging Behav, 2024, 18(1): 92-105. DOI: 10.1007/s11682-023-00809-y.
[52]
LIU X, WEI Z, TING L, et al. Microstructural Changes in the Cerebral White Matter After 12 Months of CPAP Treatment for Moderate to Severe Obstructive Sleep Apnoea: A TBSS Study[J]. Nat Sci Sleep, 2024, 16: 531-542. DOI: 10.2147/NSS.S460919.
[53]
GREGORI-PLA C, ZIRAK P, COTTA G, et al. How does obstructive sleep apnea alter cerebral hemodynamics?[J/OL]. Sleep, 2023, 46(8): zsad122 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/37336476/. DOI: 10.1093/sleep/zsad122.
[54]
YAN L, PARK H R, KEZIRIAN E J, et al. Altered regional cerebral blood flow in obstructive sleep apnea is associated with sleep fragmentation and oxygen desaturation[J]. J Cereb Blood Flow Metab, 2021, 41(10): 2712-2724. DOI: 10.1177/0271678X211012109.
[55]
XIAO P, HUA K, CHEN F, et al. Abnormal Cerebral Blood Flow and Volumetric Brain Morphometry in Patients With Obstructive Sleep Apnea[J/OL]. Front Neurosci, 2022, 16: 934166 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/35873812/. DOI: 10.3389/fnins.2022.934166.
[56]
LI X, HUI Y, SHI H, et al. Altered cerebral blood flow and white matter during wakeful rest in patients with obstructive sleep apnea: a population-based retrospective study[J/OL]. Br J Radiol, 2023, 96(1143): 20220867 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36715135/. DOI: 10.1259/bjr.20220867.
[57]
WU P H, RODRÍGUEZ-SOTO A E, RODGERS Z B, et al. MRI evaluation of cerebrovascular reactivity in obstructive sleep apnea[J]. J Cereb Blood Flow Metab, 2020, 40(6): 1328-1337. DOI: 10.1177/0271678X19862182.
[58]
KIM J S, SEO J H, KANG M-R, et al. Effect of continuous positive airway pressure on regional cerebral blood flow in patients with severe obstructive sleep apnea syndrome[J]. Sleep Med, 2017, 32: 122-128. DOI: 10.1016/j.sleep.2016.03.010.

PREV Dynamic functional connectivity MRI analysis in brain network research of the Alzheimer,s disease spectrum
NEXT Research progress on magnetic resonance imaging of chronic active lesions in multiple sclerosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn