Share:
Share this content in WeChat
X
Review
Research progress on magnetic resonance imaging of chronic active lesions in multiple sclerosis
YANG Bin  LI Yongmei 

Cite this article as: YANG B, LI Y M. Research progress on magnetic resonance imaging of chronic active lesions in multiple sclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(1): 193-197, 215. DOI:10.12015/issn.1674-8034.2025.01.031.


[Abstract] Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system mediated by the immune system, characterized by demyelination, axonal damage, and neurodegeneration. Chronic active lesion (CAL) is a crucial factor in disease progression and neurodegeneration, providing an essential guidance for the diagnosis and treatment of MS. In recent years, with the continuous advancement of imaging technologies, MRI has become an essential tool in MS diagnosis and prognosis assessment. For example, susceptibility-weighted imaging (SWI) can effectively detect iron deposition in lesions. Furthermore, positron emission tomography (PET) offers metabolic activity information on CAL, further revealing inflammatory activity and enabling multidimensional evaluation. This review will focus on the research progress and clinical value of MRI-based detection techniques in CAL, aiming to provide novel imaging-based evidence for the early diagnosis, treatment decisions and prognostic evaluation of patients with MS.
[Keywords] multiple sclerosis;chronic active lesion;paramagnetic rim lesion;slowly expanding lesion;magnetic resonance imaging;positron emission tomography

YANG Bin   LI Yongmei*  

Department of Imaging, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Corresponding author: LI Y M, E-mail: lymzhang70@163.com

Conflicts of interest   None.

Received  2024-09-12
Accepted  2024-12-25
DOI: 10.12015/issn.1674-8034.2025.01.031
Cite this article as: YANG B, LI Y M. Research progress on magnetic resonance imaging of chronic active lesions in multiple sclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(1): 193-197, 215. DOI:10.12015/issn.1674-8034.2025.01.031.

[1]
VISWESWARAN M, HENDRAWAN K, MASSEY J C, et al. Sustained immunotolerance in multiple sclerosis after stem cell transplant[J]. Ann Clin Transl Neurol, 2022, 9(2): 206-220. DOI: 10.1002/acn3.51510.
[2]
CLARKE M A, PARETO D, PESSINI-FERREIRA L, et al. Value of 3T susceptibility-weighted imaging in the diagnosis of multiple sclerosis[J]. AJNR Am J Neuroradiol, 2020, 41(6): 1001-1008. DOI: 10.3174/ajnr.A6547.
[3]
KUHLMANN T, LUDWIN S, PRAT A, et al. An updated histological classification system for multiple sclerosis lesions[J]. Acta Neuropathologica, 2016, 133(1): 13-24. DOI: 10.1007/s00401-016-1653-y.
[4]
PUKOLI D, VECSEI L. Smouldering lesion in MS: Microglia, lymphocytes and pathobiochemical mechanisms[J/OL]. Int J Mol Sci, 2023, 24(16): 12631 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10454160. DOI: 10.3390/ijms241612631.
[5]
GALBUSERA R, BAHN E, WEIGEL M, et al. Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis[J/OL]. Brain Pathol, 2023, 33(6): 13136 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10580009. DOI: 10.1111/bpa.13136.
[6]
CALVI A, TUR C, CHARD D, et al. Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis[J/OL]. Neuroimage Clin, 2022, 35: 103048 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9130104. DOI: 10.1016/j.nicl.2022.103048.
[7]
ELLIOTT C, WOLINSKY J S, HAUSER S L, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions[J]. Mult Scler, 2019, 25(14): 1915-1925. DOI: 10.1177/1352458518814117.
[8]
MATTHEWS P M. Chronic inflammation in multiple sclerosis - seeing what was always there[J]. Nat Rev Neurol, 2019, 15(10): 582-593. DOI: 10.1038/s41582-019-0240-y.
[9]
ABSINTA M, SATI P, MASUZZO F, et al. Association of chronic active multiple sclerosis lesions with disability in vivo[J]. JAMA Neurology, 2019, 76(12): 1474-1483. DOI: 10.1001/jamaneurol.2019.2399.
[10]
LUCHETTI S, FRANSEN N L, VAN EDEN C G, et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis[J]. Acta Neuropathologica, 2018, 135(4): 511-528. DOI: 10.1007/s00401-018-1818-y.
[11]
MEATON I, ALTOKHIS A, ALLEN C M, et al. Paramagnetic rims are a promising diagnostic imaging biomarker in multiple sclerosis[J]. Mult Scler, 2022, 28(14): 2212-2220. DOI: 10.1177/13524585221118677.
[12]
RAHMANZADEH R, LU P J, BARAKOVIC M, et al. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging[J]. Brain, 2021, 144(6): 1684-1696. DOI: 10.1093/brain/awab088.
[13]
BAGNATO F, SATI P, HEMOND C C, et al. Imaging chronic active lesions in multiple sclerosis: a consensus statement[J]. Brain, 2024, 147(9): 2913-2933. DOI: 10.1093/brain/awae013.
[14]
KAUNZNER U W, KANG Y, ZHANG S, et al. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions[J]. Brain, 2019, 142(1): 133-145. DOI: 10.1093/brain/awy296.
[15]
SUTHIPHOSUWAN S, SATI P, ABSINTA M, et al. Paramagnetic rim sign in radiologically isolated syndrome[J]. JAMA Neurology, 2020, 77(5): 653-655. DOI: 10.1001/jamaneurol.2020.0124.
[16]
SCHNEIDER R, BRAND-ARZAMENDI K, REYNOLD LIM T, et al. Plasma glial fibrillary acidic protein levels correlate with paramagnetic rim lesions in people with radiologically isolated syndrome[J]. Mult Scler, 2024, 30(2): 156-165. DOI: 10.1177/13524585231219131.
[17]
RAVANFAR P, LOI S M, SYEDA W T, et al. Systematic review: Quantitative susceptibility mapping (QSM) of brain iron profile in neurodegenerative diseases[J/OL]. Front Neurosci, 2021, 15: 618435 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7930077. DOI: 10.3389/fnins.2021.618435.
[18]
ABSINTA M, SATI P, SCHINDLER M, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions[J]. J Clin Invest, 2016, 126(7): 2597-2609. DOI: 10.1172/jci86198.
[19]
HEMOND C C, REICH D S, DUNDAMADAPPA S K. Paramagnetic rim lesions in multiple sclerosis: Comparison of visualization at 1.5-T and 3-T MRI[J]. AJR Am J Roentgenol, 2022, 219(1): 120-131. DOI: 10.2214/AJR.21.26777.
[20]
HAACKE E M, XU Y, CHENG Y C N, et al. Susceptibility weighted imaging (SWI)[J]. Magn Reson Med, 2004, 52(3): 612-618. DOI: 10.1002/mrm.20198.
[21]
HALLER S, HAACKE E M, THURNHER M M, et al. Susceptibility-weighted imaging: Technical essentials and clinical neurologic applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
[22]
RAHMANZADEH R, GALBUSERA R, LU P J, et al. A new advanced MRI biomarker for remyelinated lesions in multiple sclerosis[J]. Ann Neurol, 2022, 92(3): 486-502. DOI: 10.1002/ana.26441.
[23]
KIM W, SHIN H G, LEE H, et al. Chi-separation imaging for diagnosis of multiple sclerosis versus neuromyelitis optica spectrum disorder[J/OL]. Radiology, 2023, 307(1): 220941 [2024-09-12]. https://pubs.rsna.org/doi/10.1148/radiol.220941. DOI: 10.1148/radiol.220941.
[24]
LI Z, FENG R, LIU Q, et al. APART-QSM: An improved sub-voxel quantitative susceptibility mapping for susceptibility source separation using an iterative data fitting method[J/OL]. Neuroimage, 2023, 274: 120148 [2024-09-12]. https://www.sciencedirect.com/science/article/pii/S1053811923002999. DOI: 10.1016/j.neuroimage.2023.120148.
[25]
CHOI S, LAKE S, HARRISON D M. Evaluation of the blood-brain barrier, demyelination, and neurodegeneration in paramagnetic rim lesions in multiple sclerosis on 7 tesla MRI[J]. J Magn Reson Imaging, 2024, 59(3): 941-951. DOI: 10.1002/jmri.28847.
[26]
ABSINTA M, SATI P, GAITáN M I, et al. Seven-tesla phase imaging of acute multiple sclerosis lesions: A new window into the inflammatory process[J]. Ann Neurol, 2013, 74(5): 669-678. DOI: 10.1002/ana.23959.
[27]
YAO B, IKONOMIDOU V N, CANTOR F K, et al. Heterogeneity of multiple sclerosis white matter lesions detected with T2*-weighted imaging at 7.0 tesla[J]. J Neuroimaging, 2015, 25(5): 799-806. DOI: 10.1111/jon.12193.
[28]
ZHANG S, NGUYEN T D, HURTADO RUA S M, et al. Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions[J]. AJNR Am J Neuroradiol, 2019, 40(6): 987-993. DOI: 10.3174/ajnr.A6071.
[29]
KOSTIC D, DINCIC E, JOVANOVSKI A, et al. Evolution of acute "black hole" lesions in patients with relapsing-remitting multiple sclerosis[J]. Acta Neurologica Belgica, 2022, 123(3): 831-838. DOI: 10.1007/s13760-022-01938-9.
[30]
MAGGI P, SATI P, NAIR G, et al. Paramagnetic rim lesions are specific to multiple sclerosis: An international multicenter 3T MRI study[J]. Ann Neurol, 2020, 88(5): 1034-1042. DOI: 10.1002/ana.25877.
[31]
MAGGI P, BULCKE C V, PEDRINI E, et al. B cell depletion therapy does not resolve chronic active multiple sclerosis lesions[J/OL]. EBioMedicine, 2023, 94: 104701 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10436266. DOI: 10.1016/j.ebiom.2023.104701.
[32]
ABSINTA M, MARIC D, GHARAGOZLOO M, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis[J]. Nature, 2021, 597(7878): 709-714. DOI: 10.1038/s41586-021-03892-7.
[33]
MARCILLE M, HURTADO RUA S, TYSHKOV C, et al. Disease correlates of rim lesions on quantitative susceptibility mapping in multiple sclerosis[J/OL]. Sci Rep, 2022, 12(1): 4411 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8924224. DOI: 10.1038/s41598-022-08477-6.
[34]
PREZIOSA P, PAGANI E, MEANI A, et al. Chronic active lesions and larger choroid plexus explain cognition and fatigue in multiple sclerosis[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2024, 11(2): 200205 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11073888. DOI: 10.1212/NXI.0000000000200205.
[35]
HEMOND C C, BAEK J, IONETE C, et al. Paramagnetic rim lesions are associated with pathogenic CSF profiles and worse clinical status in multiple sclerosis: A retrospective cross-sectional study[J]. Mult Scler, 2022, 28(13): 2046-2056. DOI: 10.1177/13524585221102921.
[36]
REEVES J A, MOHEBBI M, WICKS T, et al. Paramagnetic rim lesions predict greater long-term relapse rates and clinical progression over 10 years[J]. Mult Scler, 2024, 30(4-5): 535-545. DOI: 10.1177/13524585241229956.
[37]
HOFMANN A, KRAJNC N, DAL-BIANCO A, et al. Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis[J]. Acta Neuropathol, 2023, 146(5): 707-724. DOI: 10.1007/s00401-023-02627-4.
[38]
KRAJNC N, DAL-BIANCO A, LEUTMEZER F, et al. Association of paramagnetic rim lesions and retinal layer thickness in patients with multiple sclerosis[J]. Mult Scler, 2023, 29(3): 374-384. DOI: 10.1177/13524585221138486.
[39]
FEDERAU C, HAINC N, EDJLALI M, et al. Evaluation of the quality and the productivity of neuroradiological reading of multiple sclerosis follow-up MRI scans using an intelligent automation software[J]. Neuroradiology, 2024, 66(3): 361-369. DOI: 10.1007/s00234-024-03293-3.
[40]
ELLIOTT C, ARNOLD D L, CHEN H, et al. Patterning chronic active demyelination in slowly expanding/evolving white matter MS lesions[J]. AJNR Am J Neuroradiol, 2020, 41(9): 1584-1591. DOI: 10.3174/ajnr.A6742.
[41]
BEYNON V, GEORGE I C, ELLIOTT C, et al. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis[J/OL]. BMJ Neurol Open, 2022, 4(1): e000240 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9185385. DOI: 10.1136/bmjno-2021-000240.
[42]
WOLINSKY J S, ARNOLD D L, BROCHET B, et al. Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: a post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial[J]. Lancet Neurol, 2020, 19(12): 998-1009. DOI: 10.1016/S1474-4422(20)30342-2.
[43]
CALVI A, MENDELSOHN Z, HAMED W, et al. Treatment reduces the incidence of newly appearing multiple sclerosis lesions evolving into chronic active, slowly expanding lesions: A retrospective analysis[J/OL]. Eur J Neurol, 2024, 31(1): 16092 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11236028. DOI: 10.1111/ene.16092.
[44]
ARNOLD D L, ELLIOTT C, MARTIN E C, et al. Effect of evobrutinib on slowly expanding lesion volume in relapsing multiple sclerosis: A post hoc analysis of a phase 2 trial[J/OL]. Neurology, 2024, 102(5): 208058 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11067693. DOI: 10.1212/WNL.0000000000208058.
[45]
PREZIOSA P, PAGANI E, MEANI A, et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(2): 1139 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8808355. DOI: 10.1212/NXI.0000000000001139.
[46]
CALVI A, CLARKE M A, PRADOS F, et al. Relationship between paramagnetic rim lesions and slowly expanding lesions in multiple sclerosis[J]. Mult Scler, 2023, 29(3): 352-362. DOI: 10.1177/13524585221141964.
[47]
ELLIOTT C, RUDKO D A, ARNOLD D L, et al. Lesion-level correspondence and longitudinal properties of paramagnetic rim and slowly expanding lesions in multiple sclerosis[J]. Mult Scler, 2023, 29(6): 680-690. DOI: 10.1177/13524585231162262.
[48]
POPESCU B F, FRISCHER J M, WEBB S M, et al. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions[J]. Acta Neuropathol, 2017, 134(1): 45-64. DOI: 10.1007/s00401-017-1696-8.
[49]
BRIER M R, TAHA F. Measuring pathology in patients with multiple sclerosis using positron emission tomography[J]. Curr Neurol Neurosci Rep, 2023, 23(9): 479-488. DOI: 10.1007/s11910-023-01285-z.
[50]
LAAKSONEN S, SARASTE M, NYLUND M, et al. Sex-driven variability in TSPO-expressing microglia in MS patients and healthy individuals[J/OL]. Front Neurol, 2024, 15: 1352116 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10913932. DOI: 10.3389/fneur.2024.1352116.
[51]
SUCKSDORFF M, MATILAINEN M, TUISKU J, et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis[J]. Brain, 2020, 143(11): 3318-3330. DOI: 10.1093/brain/awaa275.
[52]
POLVINEN E, MATILAINEN M, NYLUND M, et al. TSPO-detectable chronic active lesions predict disease progression in multiple sclerosis[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2023, 10(5): 200133 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10291892. DOI: 10.1212/NXI.0000000000200133.

PREV Research progress of multiparameter MRI in default mode network damage in patients with obstructive sleep apnea
NEXT Progress in the application of artificial intelligence in the diagnosis and treatment of glaucoma: from traditional eye examination to MRI technology
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn