Share:
Share this content in WeChat
X
Review
Research progress of multimodal MRI in the assessment of hypoxia in the microenvironment of breast cancer
ZHANG Xuan  ZHAO Haifeng  ZHAO Xiangbo  ZHANG Hao 

Cite this article as: ZHANG X, ZHAO H F, ZHAO X B, et al. Research progress of multimodal MRI in the assessment of hypoxia in the microenvironment of breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 210-215. DOI:10.12015/issn.1674-8034.2025.01.034.


[Abstract] Breast cancer is one of the most common malignant tumors among women, often accompanied by hypoxia during its development. Hypoxia is a key characteristic of solid tumors, typically resulting from rapid tumor growth and insufficient blood supply. It is closely associated with tumor invasiveness, resistance to treatment, and poor clinical outcomes, making it an important indicator of unfavorable prognosis. MRI technology can provide crucial information about the tumor microenvironment, including vascular function and intracellular hypoxia status, demonstrating significant potential and important clinical applications in the non-invasive assessment of hypoxia in breast cancer. This article reviews the research progress in assessing the hypoxic state of breast cancer using multimodal MRI techniques, such as dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), and blood oxygen level-dependent MRI (BOLD-MRI). The aim is to provide a scientific basis for optimizing treatment strategies and improving therapeutic outcomes in breast cancer through non-invasive hypoxia assessment.
[Keywords] breast cancer;hypoxia;tumor microenvironment;magnetic resonance imaging;hypoxia-inducible factors

ZHANG Xuan1, 2   ZHAO Haifeng1, 2   ZHAO Xiangbo1, 2   ZHANG Hao2*  

1 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China

2 Department of Radiology, the First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research, Lanzhou 730000, China

Corresponding author: ZHANG H, E-mail: zhanghao@lzu.edu.cn

Conflicts of interest   None.

Received  2024-10-14
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.034
Cite this article as: ZHANG X, ZHAO H F, ZHAO X B, et al. Research progress of multimodal MRI in the assessment of hypoxia in the microenvironment of breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 210-215. DOI:10.12015/issn.1674-8034.2025.01.034.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
CHEN Z, HAN F F, DU Y, et al. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 70 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/36797231/. DOI: 10.1038/s41392-023-01332-8.
[3]
ZHI S J, CHEN C, HUANG H L, et al. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment[J/OL]. Front Immunol, 2024, 15: 1370800 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/38799423/. DOI: 10.3389/fimmu.2024.1370800.
[4]
CIEPŁA J, SMOLARCZYK R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies[J/OL]. Clin Exp Med, 2024, 24(1): 235 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39361163/. DOI: 10.1007/s10238-024-01501-1.
[5]
CHEN X Y, ZHOU H M, LV J L. The importance of hypoxia-related to hemoglobin concentration in breast cancer[J]. Cell Biochem Biophys, 2024, 82(3): 1893-1906. DOI: 10.1007/s12013-024-01386-7.
[6]
LOGULLO R, HORVAT J, REINER J, et al. Multimodal, multiparametric and genetic breast imaging[J]. Radiologe, 2021, 61(2): 183-191. DOI: 10.1007/s00117-020-00801-3.
[7]
LIU Z L, SUN Y Q, TONG T. Radiol Pract, 2023, 38(10): 1234-1241. DOI: 10.13609/j.cnki.1000-0313.2023.10.002.
[8]
CROUIGNEAU R, LI Y F, AUXILLOS J, et al. Mimicking and analyzing the tumor microenvironment[J/OL]. Cell Rep Methods, 2024, 4(10): 100866 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39353424/. DOI: 10.1016/j.crmeth.2024.100866.
[9]
RAY S K, MUKHERJEE S. Hyperoxic-hypoxic paradox: breast cancer microenvironment and an innovative treatment strategy[J]. Anticancer Agents Med Chem, 2024, 24(10): 729-732. DOI: 10.2174/0118715206290816240220062545.
[10]
OUYANG Y, LI J J, TU Y, et al. HIF1A is a prognostic biomarker of breast cancer and correlates with immunocyte infiltration[J]. Chin J Cancer Biother, 2022, 29(4): 317-326. DOI: 10.3872/j.issn.1007-385x.2022.04.007.
[11]
FAMTA P, SHAH S, VAMBHURKAR G, et al. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation[J]. Drug Deliv Transl Res, 2025, 15(2): 389-406. DOI: 10.1007/s13346-024-01669-9.
[12]
IRIONDO O, MECENAS D, LI Y L, et al. Hypoxic memory mediates prolonged tumor-intrinsic type I interferon suppression to promote breast cancer progression[J]. Cancer Res, 2024, 84(19): 3141-3157. DOI: 10.1158/0008-5472.CAN-23-2028.
[13]
GAUSTAD J V, HAUGE A, WEGNER C S, et al. DCE-MRI of tumor hypoxia and hypoxia-associated aggressiveness[J/OL]. Cancers, 2020, 12(7): 1979 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/32698525/. DOI: 10.3390/cancers12071979.
[14]
SUNG Y S, PARK B, CHOI Y, et al. Dynamic contrast-enhanced MRI for oncology drug development[J]. J Magn Reson Imaging, 2016, 44(2): 251-264. DOI: 10.1002/jmri.25173.
[15]
WANG A B, BIAN J. The principle and application in clinic of dynamic contrast enhancement magnetic resonance imaging[J]. J China Clin Med Imag, 2016, 27(6): 435-438.
[16]
CARMONA-BOZO J C, MANAVAKI R, WOITEK R, et al. Hypoxia and perfusion in breast cancer: simultaneous assessment using PET/MR imaging[J]. Eur Radiol, 2021, 31(1): 333-344. DOI: 10.1007/s00330-020-07067-2.
[17]
LI Z H, HUANG H Z, ZHAO Z H, et al. Development and validation of a nomogram based on DCE-MRI radiomics for predicting hypoxia-inducible factor 1α expression in locally advanced rectal cancer[J]. Acad Radiol, 2024, 31(12): 4923-4933. DOI: 10.1016/j.acra.2024.05.015.
[18]
BALTZER P, MANN R M, IIMA M, et al. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group[J]. Eur Radiol, 2020, 30(3): 1436-1450. DOI: 10.1007/s00330-019-06510-3.
[19]
IIMA M, KATAOKA M, HONDA M, et al. Diffusion-weighted MRI for the assessment of molecular prognostic biomarkers in breast cancer[J]. Korean J Radiol, 2024, 25(7): 623-633. DOI: 10.3348/kjr.2023.1188.
[20]
STEPHEN R M, PAGEL M D, BROWN K, et al. Monitoring the development of xenograft triple-negative breast cancer models using diffusion-weighted magnetic resonance imaging[J]. Exp Biol Med, 2012, 237(11): 1273-1280. DOI: 10.1258/ebm.2012.011326.
[21]
YOSHIKAWA M, MORINE Y, YAMADA S, et al. Prognostic prediction of resectable colorectal liver metastasis using the apparent diffusion coefficient from diffusion-weighted magnetic resonance imaging[J]. Ann Gastroenterol Surg, 2020, 5(2): 252-258. DOI: 10.1002/ags3.12404.
[22]
MENG X J, LI H J, KONG L L, et al. MRI in rectal cancer: Correlations between MRI features and molecular markers Ki-67, HIF-1α, and VEGF[J]. J Magn Reson Imaging, 2016, 44(3): 594-600. DOI: 10.1002/jmri.25195.
[23]
LI X S, WU S D, LI D C, et al. Intravoxel incoherent motion combined with dynamic contrast-enhanced perfusion MRI of early cervical carcinoma: correlations between multimodal parameters and HIF-1α expression[J]. J Magn Reson Imaging, 2019, 50(3): 918-929. DOI: 10.1002/jmri.26604.
[24]
LU J X, LUAN Y Y, QIN F Y, et al. Evaluation of hypoxic microenvironment of cervical squamous cell carcinoma via magnetic resonance functional imaging[J]. Chin J Med Imag, 2023, 31(9): 967-972. DOI: 10.3969/j.issn.1005-5185.2023.09.014.
[25]
HUANG Z Q, XU X Q, MENG X J, et al. Correlations between ADC values and molecular markers of Ki-67 and HIF-1α in hepatocellular carcinoma[J]. Eur J Radiol, 2015, 84(12): 2464-2469. DOI: 10.1016/j.ejrad.2015.09.013.
[26]
MO T, BRANDAL S H B, KÖHN-LUQUE A, et al. Quantification of tumor hypoxia through unsupervised modelling of consumption and supply hypoxia MR imaging in breast cancer[J/OL]. Cancers, 2022, 14(5): 1326 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/35267636/. DOI: 10.3390/cancers14051326.
[27]
HOMPLAND T, HOLE K H, RAGNUM H B, et al. Combined MR imaging of oxygen consumption and supply reveals tumor hypoxia and aggressiveness in prostate cancer patients[J]. Cancer Res, 2018, 78(16): 4774-4785. DOI: 10.1158/0008-5472.CAN-17-3806.
[28]
O'CONNOR J P B, ROBINSON S P, WATERTON J C. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI[J/OL]. Br J Radiol, 2019, 92(1095): 20180642 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/30272998/. DOI: 10.1259/bjr.20180642.
[29]
MCCABE A, MARTIN S, SHAH J, et al. T1 based oxygen-enhanced MRI in tumours; a scoping review of current research[J/OL]. Br J Radiol, 2023, 96(1146): 20220624 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/36809186/. DOI: 10.1259/bjr.20220624.
[30]
MCCABE A, MARTIN S, ROWE S, et al. Oxygen-enhanced MRI assessment of tumour hypoxia in head and neck cancer is feasible and well tolerated in the clinical setting[J/OL]. Eur Radiol Exp, 2024, 8(1): 27 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/38443722/. DOI: 10.1186/s41747-024-00429-1.
[31]
WOODWARD O B, DRIVER I, SCHWARZ S T, et al. Assessment of brainstem function and haemodynamics by MRI: challenges and clinical prospects[J/OL]. Br J Radiol, 2023, 96(1151): 20220940 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/37721043/. DOI: 10.1259/bjr.20220940.
[32]
FUSCO R, GRANATA V, MATTACE RASO M, et al. Blood oxygenation level dependent magnetic resonance imaging (MRI), dynamic contrast enhanced MRI, and diffusion weighted MRI for benign and malignant breast cancer discrimination: a preliminary experience[J/OL]. Cancers, 2021, 13(10): 2421 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/34067721/. DOI: 10.3390/cancers13102421.
[33]
RAKOW-PENNER R, DANIEL B, GLOVER G H. Detecting blood oxygen level-dependent (BOLD) contrast in the breast[J]. J Magn Reson Imag, 2010, 32(1): 120-129. DOI: 10.1002/jmri.22227.
[34]
MCPHAIL L D, ROBINSON S P. Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: relationship to histologic assessment of hypoxia and fibrosis[J]. Radiology, 2010, 254(1): 110-118. DOI: 10.1148/radiol.2541090395.
[35]
JIANG L, WEATHERALL P T, MCCOLL R W, et al. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study[J]. J Magn Reson Imaging, 2013, 37(5): 1083-1092. DOI: 10.1002/jmri.23891.
[36]
LIU M, GUO X J, WANG S K, et al. BOLD-MRI of breast invasive ductal carcinoma: correlation of R2* value and the expression of HIF-1α[J]. Eur Radiol, 2013, 23(12): 3221-3227. DOI: 10.1007/s00330-013-2937-4.
[37]
CHOI H Y, KO E S, HAN B K, et al. Prognostic significance of transverse relaxation rate (R2*) in blood oxygenation level-dependent magnetic resonance imaging in patients with invasive breast cancer[J/OL]. PLoS One, 2016, 11(7): e0158500 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/27384310/. DOI: 10.1371/journal.pone.0158500.
[38]
BARTSCH S J, EHRET V, FRISKE J, et al. Hyperoxic BOLD-MRI-based characterization of breast cancer molecular subtypes is independent of the supplied amount of oxygen: a preclinical study[J/OL]. Diagnostics, 2023, 13(18): 2946 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/37761313/. DOI: 10.3390/diagnostics13182946.
[39]
BARTSCH S J, BROŽOVÁ K, EHRET V, et al. Non-contrast-enhanced multiparametric MRI of the hypoxic tumor microenvironment allows molecular subtyping of breast cancer: a pilot study[J/OL]. Cancers, 2024, 16(2): 375 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/38254864/. DOI: 10.3390/cancers16020375.
[40]
KUMARI A, MISHRA G, PARIHAR P, et al. Role of magnetic resonance spectroscopy in evaluating choline levels in gallbladder carcinoma: a comprehensive review[J/OL]. Cureus, 2024, 16(8): e66205 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39233932/. DOI: 10.7759/cureus.66205.
[41]
CAPATINA A L, MALCOLM J R, STENNING J, et al. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment[J/OL]. Front Cell Dev Biol, 2024, 12: 1421629 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39282472/. DOI: 10.3389/fcell.2024.1421629.
[42]
DEMICHELE E, BURET A G, TAYLOR C T. Hypoxia-inducible factor-driven glycolytic adaptations in host-microbe interactions[J]. Pflugers Arch, 2024, 476(9): 1353-1368. DOI: 10.1007/s00424-024-02953-w.
[43]
ZHANG H Q, DENG Z Y, XU H. Progress of multimodal functional magnetic resonance imaging in the diagnosis of breast cancer[J]. Hainan Med J, 2024, 35(8): 1204-1208. DOI: 10.3969/j.issn.1003-6350.2024.08.031.
[44]
CHEUNG S M, HUSAIN E, MASANNAT Y, et al. Lactate concentration in breast cancer using advanced magnetic resonance spectroscopy[J]. Br J Cancer, 2020, 123(2): 261-267. DOI: 10.1038/s41416-020-0886-7.
[45]
CHEN M C, ZHOU X Q, CAI H S, et al. Evaluation of hypoxia in hepatocellular carcinoma using quantitative MRI: significances, challenges, and advances[J]. J Magn Reson Imaging, 2023, 58(1): 12-25. DOI: 10.1002/jmri.28694.
[46]
ZHANG L, WANG J. Research progress in the application of chemical exchange saturation transfer imaging in glioma[J]. Chin J Magn Reson Imag, 2022, 13(6): 139-142. DOI: 10.12015/issn.1674-8034.2022.06.029.
[47]
ANDELIUS T C K, HANSEN E S S, BØGH N, et al. Hyperpolarized 13C magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy: First investigations in a large animal model[J/OL]. NMR Biomed, 2024, 37(5): e5110 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/38317333/. DOI: 10.1002/nbm.5110.
[48]
BERTALAN G, KLEIN C, SCHREYER S, et al. Biomechanical properties of the hypoxic and dying brain quantified by magnetic resonance elastography[J/OL]. Acta Biomater, 2020, 101: 395-402 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/31726251/. DOI: 10.1016/j.actbio.2019.11.011.
[49]
DAIMIEL NARANJO I, BHOWMIK A, BASUKALA D, et al. Assessment of hypoxia in breast cancer: emerging functional MR imaging and spectroscopy techniques and clinical applications[J]. J Magn Reson Imaging, 2025, 61(1): 83-96. DOI: 10.1002/jmri.29424.
[50]
GILLIES R J, BALAGURUNATHAN Y. Perfusion MR imaging of breast cancer: insights using "habitat imaging"[J]. Radiology, 2018, 288(1): 36-37. DOI: 10.1148/radiol.2018180271.

PREV Advances in the application of ultrashort echo time sequence pulmonary function imaging
NEXT Advances in radiomics in accurate diagnosis, treatment and prognosis evaluation of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn