Share:
Share this content in WeChat
X
Review
Advances in radiomics in accurate diagnosis, treatment and prognosis evaluation of hepatocellular carcinoma
LIU Luhao  ZHOU Zhou 

Cite this article as: LIU L H, ZHOU Z. Advances in radiomics in accurate diagnosis, treatment and prognosis evaluation of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(1): 216-221, 227. DOI:10.12015/issn.1674-8034.2025.01.035.


[Abstract] Radiomics can extract high-throughput features that are often imperceptible to the human eyes from multi-modal medical images, and establish disease diagnosis and prognosis prediction models through intricate statistical analyses. Hepatocellular carcinoma (HCC) is a prevalent malignant tumor of the digestive system, with high morbidity and mortality in China and globally. In recent years, with the continuous exploration of artificial intelligence in medical research, radiomics has shown new vitality. Researchers have deeply analyzed the temporal and spatial heterogeneity of HCC from different modes and dimensions of information. The excellent model performance provides decision support for clinical precision medicine. Nevertheless, the research results still need to be verified and optimized with a large number of prospective high-quality data, the process specification should be established, and a multi-omics research model integrating radiomics should be gradually formed. This review focuses on the latest progress of radiomics in the early diagnosis and differentiation of HCC, prediction of histopathological information, treatment and prognosis evaluation. In this review, the research status and limitations of each part are analyzed and summarized in depth, aiming to provide new evidence-based medicine support in this field, and propose future research directions for researchers.
[Keywords] hepatocellular carcinoma;radiomics;computed tomography;magnetic resonance imaging;artificial intelligence;machine learning;deep learning;accurate diagnosis and treatment;prognosis evaluation

LIU Luhao1   ZHOU Zhou2*  

1 The Third Clinical School of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China

2 Department of Radiology, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450003, China

Corresponding author: ZHOU Z, E-mail: zhouzhou5337@163.com

Conflicts of interest   None.

Received  2024-09-22
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.01.035
Cite this article as: LIU L H, ZHOU Z. Advances in radiomics in accurate diagnosis, treatment and prognosis evaluation of hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(1): 216-221, 227. DOI:10.12015/issn.1674-8034.2025.01.035.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
Department of Medical Administration of National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition) [J]. Chin J Magn Reson Imaging, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[3]
CHIDAMBARANATHAN-REGHUPATY S, FISHER P B, SARKAR D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification[J]. Adv Cancer Res, 2021, 149: 1-61. DOI: 10.1016/bs.acr.2020.10.001.
[4]
NEVOLA R, RUOCCO R, CRISCUOLO L, et al. Predictors of early and late hepatocellular carcinoma recurrence[J]. World J Gastroenterol, 2023, 29(8): 1243-1260. DOI: 10.3748/wjg.v29.i8.1243.
[5]
SAFRI F, NGUYEN R, ZEREHPOOSHNESFCHI S, et al. Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications[J]. Cancer Gene Ther, 2024, 31(8): 1105-1112. DOI: 10.1038/s41417-024-00764-w.
[6]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[7]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[8]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[9]
JAN M, SPANGARO A, LENARTOWICZ M, et al. From pixels to insights: Machine learning and deep learning for bioimage analysis[J/OL]. Bioessays, 2024, 46(2): e2300114 [2024-09-01]. https://onlinelibrary.wiley.com/doi/10.1002/bies.202300114. DOI: 10.1002/bies.202300114.
[10]
LUO X, LI P W, CHEN H Y, et al. Automatic segmentation of hepatocellular carcinoma on dynamic contrast-enhanced MRI based on deep learning[J/OL]. Phys Med Biol, 2024, 69(6) [2024-09-01]. https://iopscience.iop.org/article/10.1088/1361-6560/ad2790. DOI: 10.1088/1361-6560/ad2790.
[11]
HE X J, LIU X W, ZUO F L, et al. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine[J]. Semin Cancer Biol, 2023, 88: 187-200. DOI: 10.1016/j.semcancer.2022.12.009.
[12]
HUANG Y Q, LIU Z Y. Integrating radiomics into multi-omics research: unveiling new perspectives on precision oncology[J]. Chin J Bases Clin Gen Surg, 2024, 31(3): 257-264. DOI: 10.7507/1007-9424.202312050.
[13]
RONOT M, PURCELL Y, VILGRAIN V. Hepatocellular carcinoma: current imaging modalities for diagnosis and prognosis[J]. Dig Dis Sci, 2019, 64(4): 934-950. DOI: 10.1007/s10620-019-05547-0.
[14]
MOKRANE F Z, LU L, VAVASSEUR A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-570. DOI: 10.1007/s00330-019-06347-w.
[15]
GUO L X, HAO X, CHEN L, et al. Early warning of hepatocellular carcinoma in cirrhotic patients by three-phase CT-based deep learning radiomics model: a retrospective, multicentre, cohort study[J/OL]. EClinicalMedicine, 2024, 74: 102718 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11279308/. DOI: 10.1016/j.eclinm.2024.102718.
[16]
LIU N, WU Y K, TAO Y Y, et al. Differentiation of hepatocellular carcinoma from intrahepatic cholangiocarcinoma through MRI radiomics[J/OL]. Cancers, 2023, 15(22): 5373 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10670473/. DOI: 10.3390/cancers15225373.
[17]
DING Z R, LIN K Y, FU J, et al. An MR-based radiomics model for differentiation between hepatocellular carcinoma and focal nodular hyperplasia in non-cirrhotic liver[J/OL]. World J Surg Oncol, 2021, 19(1): 181 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8215802/. DOI: 10.1186/s12957-021-02266-7.
[18]
ZHAO X T, ZHOU Y K, ZHANG Y, et al. Radiomics based on contrast-enhanced MRI in differentiation between fat-poor angiomyolipoma and hepatocellular carcinoma in noncirrhotic liver: A multicenter analysis[J/OL]. Front Oncol, 2021, 11: 744756 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8548657/. DOI: 10.3389/fonc.2021.744756.
[19]
SHINKAWA H, TANAKA S, KABATA D, et al. The prognostic impact of tumor differentiation on recurrence and survival after resection of hepatocellular carcinoma is dependent on tumor size[J]. Liver Cancer, 2021, 10(5): 461-472. DOI: 10.1159/000517992.
[20]
YANG Y, ZHANG S, CUI C, et al. Multiphase MRI-based radiomics for predicting histological grade of hepatocellular carcinoma[J]. J Magn Reson Imaging, 2024, 60(5): 2117-2127. DOI: 10.1002/jmri.29289.
[21]
LIU H F, WANG M, WANG Q, et al. Multiparametric MRI-based intratumoral and peritumoral radiomics for predicting the pathological differentiation of hepatocellular carcinoma[J/OL]. Insights Imaging, 2024, 15(1): 97 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10973314/. DOI: 10.1186/s13244-024-01623-w.
[22]
MAO Y F, WANG J C, ZHU Y, et al. Gd-EOB-DTPA-enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2022, 11(1): 13-24. DOI: 10.21037/hbsn-19-870.
[23]
NAGTEGAAL I D, ODZE R D, KLIMSTRA D, et al. The 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188. DOI: 10.1111/his.13975.
[24]
CHEN J, XIA C C, DUAN T, et al. Macrotrabecular-massive hepatocellular carcinoma: imaging identification and prediction based on gadoxetic acid-enhanced magnetic resonance imaging[J]. Eur Radiol, 2021, 31(10): 7696-7704. DOI: 10.1007/s00330-021-07898-7.
[25]
FENG Z C, LI H L, LIU Q Y, et al. CT radiomics to predict macrotrabecular-massive subtype and immune status in hepatocellular carcinoma[J/OL]. Radiology, 2023, 307(1): e221291 [2024-09-01]. https://pubs.rsna.org/doi/10.1148/radiol.221291. DOI: 10.1148/radiol.221291.
[26]
LI M S, FAN Y H, YOU H Y, et al. Dual-energy CT deep learning radiomics to predict macrotrabecular-massive hepatocellular carcinoma[J/OL]. Radiology, 2023, 308(2): e230255 [2024-09-01]. https://pubs.rsna.org/doi/10.1148/radiol.230255. DOI: 10.1148/radiol.230255.
[27]
YAN Y, LIN X S, MING W Z, et al. Radiomic analysis based on Gd-EOB-DTPA enhanced MRI for the preoperative prediction of Ki-67 expression in hepatocellular carcinoma[J]. Acad Radiol, 2024, 31(3): 859-869. DOI: 10.1016/j.acra.2023.07.019.
[28]
ZHANG L Q, ZHOU H S, ZHANG X Q, et al. A radiomics nomogram for predicting cytokeratin 19-positive hepatocellular carcinoma: a two-center study[J/OL]. Front Oncol, 2023, 13: 1174069 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10174303/. DOI: 10.3389/fonc.2023.1174069.
[29]
CHONG H H, GONG Y D, ZHANG Y F, et al. Radiomics on gadoxetate disodium-enhanced MRI: non-invasively identifying glypican 3-positive hepatocellular carcinoma and postoperative recurrence[J]. Acad Radiol, 2023, 30(1): 49-63. DOI: 10.1016/j.acra.2022.04.006.
[30]
YIN Z Y, LI X W. Immunotherapy for hepatocellular carcinoma[J]. Cancer Lett, 2020, 470: 8-17. DOI: 10.1016/j.canlet.2019.12.002.
[31]
GONG X Q, LIU N, TAO Y Y, et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma[J/OL]. Sci Rep, 2023, 13(1): 7710 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10182068/. DOI: 10.1038/s41598-023-34763-y.
[32]
WANG W T, GUO Y X, ZHONG J T, et al. The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma[J/OL]. Sci Rep, 2021, 11(1): 2415 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7843639/. DOI: 10.1038/s41598-021-82058-x.
[33]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[34]
YUAN E Y, CHEN Y T, SONG B. Quality of radiomics for predicting microvascular invasion in hepatocellular carcinoma: a systematic review[J]. Eur Radiol, 2023, 33(5): 3467-3477. DOI: 10.1007/s00330-023-09414-5.
[35]
XIA T Y, ZHOU Z H, MENG X P, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J/OL]. Radiology, 2023, 307(4): e222729 [2024-09-01]. https://pubs.rsna.org/doi/10.1148/radiol.222729. DOI: 10.1148/radiol.222729.
[36]
FANG J H, XU L, SHANG L R, et al. Vessels that encapsulate tumor clusters (VETC) pattern is a predictor of sorafenib benefit in patients with hepatocellular carcinoma[J]. Hepatology, 2019, 70(3): 824-839. DOI: 10.1002/hep.30366.
[37]
DONG X, YANG J W, ZHANG B H, et al. Deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2024, 59(1): 108-119. DOI: 10.1002/jmri.28745.
[38]
JI G W, ZHU F P, XU Q, et al. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: A multi-institutional study[J]. Radiology, 2020, 294(3): 568-579. DOI: 10.1148/radiol.2020191470.
[39]
CAO X S, YANG H R, LUO X, et al. A cox nomogram for assessing recurrence free survival in hepatocellular carcinoma following surgical resection using dynamic contrast-enhanced MRI radiomics[J]. J Magn Reson Imaging, 2023, 58(6): 1930-1941. DOI: 10.1002/jmri.28725.
[40]
DENG P Z, ZHAO B G, HUANG X H, et al. Preoperative contrast-enhanced computed tomography-based radiomics model for overall survival prediction in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(31): 4376-4389. DOI: 10.3748/wjg.v28.i31.4376.
[41]
NIE P, ZHANG J T, MIAO W J, et al. Incremental value of radiomics-based heterogeneity to the existing risk criteria in predicting recurrence of hepatocellular carcinoma after liver transplantation[J]. Eur Radiol, 2023, 33(9): 6608-6618. DOI: 10.1007/s00330-023-09591-3.
[42]
ZHANG X J, WANG C D, ZHENG D, et al. Radiomics nomogram based on multi-parametric magnetic resonance imaging for predicting early recurrence in small hepatocellular carcinoma after radiofrequency ablation[J/OL]. Front Oncol, 2022, 12: 1013770 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9686343/. DOI: 10.3389/fonc.2022.1013770.
[43]
WANG Y D, ZHANG Y, XIAO J C, et al. Multicenter integration of MR radiomics, deep learning, and clinical indicators for predicting hepatocellular carcinoma recurrence after thermal ablation[J]. J Hepatocell Carcinoma, 2024, 11: 1861-1874. DOI: 10.2147/JHC.S482760.
[44]
WANG Y X, LI M, ZHANG Z, et al. Application of radiomics in the efficacy evaluation of transarterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis[J]. Acad Radiol, 2024, 31(1): 273-285. DOI: 10.1016/j.acra.2023.08.001.
[45]
DAI Y M, LIU D M, XIN Y J, et al. Efficacy and interpretability analysis of noninvasive imaging based on computed tomography in patients with hepatocellular carcinoma after initial transarterial chemoembolization[J]. Acad Radiol, 2023, 30(Suppl 1): S61-S72. DOI: 10.1016/j.acra.2023.05.027.
[46]
ZHAO Y, ZHANG J, WANG N, et al. Intratumoral and peritumoral radiomics based on contrast-enhanced MRI for preoperatively predicting treatment response of transarterial chemoembolization in hepatocellular carcinoma[J/OL]. BMC Cancer, 2023, 23(1): 1026 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10594790/. DOI: 10.1186/s12885-023-11491-0.
[47]
SONG W L, YU X L, GUO D J, et al. MRI-based radiomics: associations with the recurrence-free survival of patients with hepatocellular carcinoma treated with conventional transcatheter arterial chemoembolization[J]. J Magn Reson Imaging, 2020, 52(2): 461-473. DOI: 10.1002/jmri.26977.
[48]
CHENG S H, HU G, JIN Z Y, et al. CT-based radiomics nomogram for prediction of survival after transarterial chemoembolization with drug-eluting beads in patients with hepatocellular carcinoma and portal vein tumor Thrombus[J]. Eur Radiol, 2023, 33(12): 8715-8726. DOI: 10.1007/s00330-023-09830-7.
[49]
PARK J W, LEE H S, HONG H, et al. Efficacy of radiomics in predicting oncologic outcome of liver-directed combined radiotherapy in locally advanced hepatocellular carcinoma[J/OL]. Cancers, 2023, 15(22): 5405 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10670316/. DOI: 10.3390/cancers15225405.
[50]
WANG L H, YAN D F, SHEN L, et al. Prognostic value of a CT radiomics-based nomogram for the overall survival of patients with nonmetastatic BCLC stage C hepatocellular carcinoma after stereotactic body radiotherapy[J/OL]. J Oncol, 2023, 2023: 1554599 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9831699/. DOI: 10.1155/2023/1554599.
[51]
XU B, DONG S Y, BAI X L, et al. Tumor radiomic features on pretreatment MRI to predict response to lenvatinib plus an anti-PD-1 antibody in advanced hepatocellular carcinoma: A multicenter study[J]. Liver Cancer, 2022, 12(3): 262-276. DOI: 10.1159/000528034.
[52]
HUA Y L, SUN Z X, XIAO Y X, et al. Pretreatment CT-based machine learning radiomics model predicts response in unresectable hepatocellular carcinoma treated with lenvatinib plus PD-1 inhibitors and interventional therapy[J/OL]. J Immunother Cancer, 2024, 12(7): e008953 [2024-09-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11261678/. DOI: 10.1136/jitc-2024-008953.

PREV Research progress of multimodal MRI in the assessment of hypoxia in the microenvironment of breast cancer
NEXT Current status and challenges of deep learning in predicting lymph node status in colorectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn