Share:
Share this content in WeChat
X
Review
Current status and challenges of deep learning in predicting lymph node status in colorectal cancer
ZHAO Wanting  ZHANG Guangwen  GAO Hui  ZHANG Jinsong 

Cite this article as: ZHAO W T, ZHANG G W, GAO H, et al. Current status and challenges of deep learning in predicting lymph node status in colorectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 222-227. DOI:10.12015/issn.1674-8034.2025.01.036.


[Abstract] Colorectal cancer (CRC) is one of the most prevalent malignant neoplasms within the gastrointestinal tract. Clarifying the status of lymph node involvement in CRC is essential for formulating personalized treatment strategies and evaluating prognosis. Compared to visual assessments by specialists and radiomics techniques, the neural network based deep learning (DL) approaches with the characteristics of high automaticity, adaptability, and scalability has demonstrated promising potential for evaluating lymph node status in CRC. Therefore, this article will provide a comprehensive review on the application of DL methods in predicting the lymph node status in CRC patients with CT, MR, and digital pathology images, and explore future research directions in this field, with the objective of providing novel methodologies and references for enhancing the accuracy of lymph node status prediction in CRC patients.
[Keywords] colorectal cancer;lymph node metastasis;magnetic resonance imaging;deep learning;prediction

ZHAO Wanting1, 2   ZHANG Guangwen2   GAO Hui1   ZHANG Jinsong2*  

1 Medical School of Yan'an University, Yan'an 716000, China

2 Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China

Corresponding author: ZHANG J S, E-mail: stspine@163.com

Conflicts of interest   None.

Received  2024-12-31
Accepted  2025-01-18
DOI: 10.12015/issn.1674-8034.2025.01.036
Cite this article as: ZHAO W T, ZHANG G W, GAO H, et al. Current status and challenges of deep learning in predicting lymph node status in colorectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(1): 222-227. DOI:10.12015/issn.1674-8034.2025.01.036.

[1]
BENSON A B, VENOOK A P, ADAM M, et al. NCCN guidelines® insights: rectal cancer, version 3.2024[J]. J Natl Compr Canc Netw, 2024, 22(6): 366-375. DOI: 10.6004/jnccn.2024.0041.
[2]
HUANG L B, HUANG Q S, YANG L. Epidemiological characteristics and prevention of colorectal cancer globally and in China: an interpretation of the Global Cancer Statistics 2022[J]. Chin J Bases Clin Gen Surg, 2024, 31(5): 530-537. DOI: 10.7507/1007-9424.202404014.
[3]
HAZEN S A, SLUCKIN T C, KONISHI T, et al. Lateral lymph node dissection in rectal cancer: State of the art review[J]. Eur J Surg Oncol, 2022, 48(11): 2315-2322. DOI: 10.1016/j.ejso.2021.11.003.
[4]
HUANG F, XIAO T X, SHEN G Z, et al. Lateral lymph node metastasis without mesenteric lymph node involvement in middle-low rectal cancer: Results of a multicentre lateral node collaborative group study in China[J/OL]. Eur J Surg Oncol, 2024, 50(12): 108737 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S0748798324007947?via%3Dihub#cebib0010. DOI: 10.1016/j.ejso.2024.108737.
[5]
COTAN H T, EMILESCU R A, IACIU C I, et al. Prognostic and predictive determinants of colorectal cancer: a comprehensive review[J/OL]. Cancers, 2024, 16(23): 3928 [2025-01-18]. https://www.mdpi.com/2072-6694/16/23/3928. DOI: 10.3390/cancers16233928.
[6]
WEI Q R, YUAN W J, JIA Z Q, et al. Preoperative MR radiomics based on high-resolution T2-weighted images and amide proton transfer-weighted imaging for predicting lymph node metastasis in rectal adenocarcinoma[J]. Abdom Radiol, 2023, 48(2): 458-470. DOI: 10.1007/s00261-022-03731-x.
[7]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[8]
CHEN J, LIU Y, WEI S, et al. A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond[J/OL]. Med Image Anal, 2025, 100: 103385 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S1361841524003104?via%3Dihub. DOI: 10.1016/j.media.2024.103385.
[9]
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Comput, 2006, 18(7): 1527-1554. DOI: 10.1162/neco.2006.18.7.1527.
[10]
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
[11]
WANG H R, JIN Q Y, LI S M, et al. A comprehensive survey on deep active learning in medical image analysis[J/OL]. Med Image Anal, 2024, 95: 103201 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S1361841524001269?via%3Dihub. DOI: 10.1016/j.media.2024.103201.
[12]
KEVIN ZHOU S, GREENSPAN H, DAVATZIKOS C, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109(5): 820-838. DOI: 10.1109/JPROC.2021.3054390.
[13]
SOFFER S, BEN-COHEN A, SHIMON O, et al. Convolutional neural networks for radiologic images: a radiologist's guide[J]. Radiology, 2019, 290(3): 590-606. DOI: 10.1148/radiol.2018180547.
[14]
YAO L, LI S, TAO Q, et al. Deep learning for colorectal cancer detection in contrast-enhanced CT without bowel preparation: a retrospective, multicentre study[J/OL]. EBioMedicine, 2024, 104: 10518 3[2025-01-18]. https://www.sciencedirect.com/science/article/pii/S2352396424002184?via%3Dihub. DOI: 10.1016/j.ebiom.2024.105183.
[15]
ZHAO X Y, XIE P Y, WANG M M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-MRI for rectal cancer: a multicentre study[J/OL]. EBioMedicine, 2020, 56: 102780 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S2352396420301559?via%3Dihub. DOI: 10.1016/j.ebiom.2020.102780.
[16]
WU Q Y, LIU S L, SUN P, et al. Establishment and clinical application value of an automatic diagnosis platform for rectal cancer T-staging based on a deep neural network[J]. Chin Med J, 2021, 134(7): 821-828. DOI: 10.1097/CM9.0000000000001401.
[17]
ZHOU X, LU Y, WU Y, et al. Construction and validation of a deep learning prognostic model based on digital pathology images of stage Ⅲ colorectal cancer[J/OL]. Eur J Surg Oncol, 2024, 50(7): 108369 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S0748798324004219?via%3Dihub. DOI: 10.1016/j.ejso.2024.108369.
[18]
ZAMANITAJEDDIN N, JAHANIFAR M, BILAL M, et al. Social network analysis of cell networks improves deep learning for prediction of molecular pathways and key mutations in colorectal cancer[J/OL]. Med Image Anal, 2024, 93: 103071 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S1361841523003316?via%3Dihub. DOI: 10.1016/j.media.2023.103071.
[19]
LIU X Y, ZHANG D F, LIU Z Y, et al. Deep learning radiomics-based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A multicentre study[J/OL]. EBioMedicine, 2021, 69: 103442 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S2352396421002358?via%3Dihub. DOI: 10.1016/j.ebiom.2021.103442.
[20]
AL-SELWI S M, HASSAN M F, ABDULKADIR S J, et al. RNN-LSTM: from applications to modeling techniques and beyond: systematic review[J/OL]. J King Saud Univ Comput Inf Sci, 2024, 36(5): 102068 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S1319157824001575. DOI: 10.1016/j.jksuci.2024.102068.
[21]
HITZLER P, EBERHART A, EBRAHIMI M, et al. Neuro-symbolic approaches in artificial intelligence[J/OL]. Natl Sci Rev, 2022, 9(6): nwac035 [2025-01-18]. https://academic.oup.com/nsr/article/9/6/nwac035/6542460. DOI: 10.1093/nsr/nwac035.
[22]
LI H, WANG Y, WANG Y, et al. A multi-memory-augmented network with a curvy metric method for video anomaly detection[J/OL]. Neural Netw, 2024, 184: 106972 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S0893608024009018?via%3Dihub. DOI: 10.1016/j.neunet.2024.106972.
[23]
WANG H, MAN H, CUI W, et al. GeneWorker: an end-to-end robotic reinforcement learning approach with collaborative generator and worker networks[J/OL]. Neural Netw, 2024, 178: 106472 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S0893608024003964?via%3Dihub. DOI: 10.1016/j.neunet.2024.106472.
[24]
ZHAO J, WANG H, ZHANG Y, et al. Deep learning radiomics model related with genomics phenotypes for lymph node metastasis prediction in colorectal cancer[J]. Radiother Oncol, 2022, 167: 195-202. DOI: 10.1016/j.radonc.2021.12.031.
[25]
BEDRIKOVETSKI S, ZHANG J P, SEOW W, et al. Deep learning to predict lymph node status on pre-operative staging CT in patients with colon cancer[J]. J Med Imaging Radiat Oncol, 2024, 68(1): 33-40. DOI: 10.1111/1754-9485.13584.
[26]
LU Y, YU Q Y, GAO Y X, et al. Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks[J]. Cancer Res, 2018, 78(17): 5135-5143. DOI: 10.1158/0008-5472.CAN-18-0494.
[27]
ZHOU Y P, LI S, ZHANG X X, et al. High definition MRI rectal lymph node aided diagnostic system based on deep neural network[J]. Chin J Surg, 2019, 57(2): 108-113. DOI: 10.3760/cma.j.issn.0529-5815.2019.02.007.
[28]
DING L, LIU G W, ZHANG X X, et al. A deep learning nomogram kit for predicting metastatic lymph nodes in rectal cancer[J]. Cancer Med, 2020, 9(23): 8809-8820. DOI: 10.1002/cam4.3490.
[29]
LI J, ZHOU Y, WANG P, et al. Deep transfer learning based on magnetic resonance imaging can improve the diagnosis of lymph node metastasis in patients with rectal cancer[J]. Quant Imaging Med Surg, 2021, 11(6): 2477-2485. DOI: 10.21037/qims-20-525.
[30]
XIA W, LI D D, HE W G, et al. Multicenter evaluation of a weakly supervised deep learning model for lymph node diagnosis in rectal cancer at MRI[J/OL]. Radiol Artif Intell, 2024, 6(2): e230152 [2025-01-18]. https://pubs.rsna.org/doi/10.1148/ryai.230152?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed. DOI: 10.1148/ryai.230152.
[31]
WAN L J, HU J S, CHEN S, et al. Prediction of lymph node metastasis in stage T1-2 rectal cancers with MRI-based deep learning[J]. Eur Radiol, 2023, 33(5): 3638-3646. DOI: 10.1007/s00330-023-09450-1.
[32]
FIELDS A C, LU P, HU F, et al. Lymph node positivity in T1/T2 rectal cancer: a word of caution in an era of increased incidence and changing biology for rectal cancer[J]. J Gastrointest Surg, 2021, 25(4): 1029-1035. DOI: 10.1007/s11605-020-04580-z.
[33]
THOMPSON N, MORLEY-BUNKER A, MCLAUCHLAN J, et al. Use of artificial intelligence for the prediction of lymph node metastases in early-stage colorectal cancer: systematic review[J/OL]. BJS Open, 2024, 8(2): zrae033 [2025-01-18]. https://academic.oup.com/bjsopen/article/8/2/zrae033/7651053?login=true. DOI: 10.1093/bjsopen/zrae033.
[34]
CHANG G, HALABI W J, ALI F. Management of lateral pelvic lymph nodes in rectal cancer[J]. J Surg Oncol, 2023, 127(8): 1264-1270. DOI: 10.1002/jso.27317.
[35]
XIAO T, CHEN J, LIU Q. Management of internal iliac and obturator lymph nodes in mid-low rectal cancer[J/OL]. World J Surg Oncol, 2024, 22(1): 153 [2025-01-18]. https://wjso.biomedcentral.com/articles/10.1186/s12957-024-03427-0. DOI: 10.1186/s12957-024-03427-0.
[36]
OZAKI K, KUROSE Y, KAWAI K, et al. Development of a diagnostic artificial intelligence tool for lateral lymph node metastasis in advanced rectal cancer[J/OL]. Dis Colon Rectum, 2023, 66(12): e1246-e1253 [2025-01-18]. https://journals.lww.com/dcrjournal/fulltext/2023/12000/development_of_a_diagnostic_artificial.11.aspx. DOI: 10.1097/dcr.0000000000002719.
[37]
NIAZI M K K, PARWANI A V, GURCAN M N. Digital pathology and artificial intelligence[J/OL]. Lancet Oncol, 2019, 20(5): e253-e261 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S1470204519301548?via%3Dihub. DOI: 10.1016/S1470-2045(19)30154-8.
[38]
PATKAR S, CHEN A, BASNET A, et al. Predicting the tumor microenvironment composition and immunotherapy response in non-small cell lung cancer from digital histopathology images[J/OL]. NPJ Precis Oncol, 2024, 8(1): 280 [2025-01-18]. https://www.nature.com/articles/s41698-024-00765-w. DOI: 10.1038/s41698-024-00765-w.
[39]
POCEVIČIŪTĖ M, DING Y, BROMÉE R, et al. Out-of-distribution detection in digital pathology: Do foundation models bring the end to reconstruction-based approaches?[J/OL]. Comput Biol Med, 2025, 184: 109327 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S0010482524014124?via%3Dihub. DOI: 10.1016/j.compbiomed.2024.109327.
[40]
KROGUE J D, AZIZI S, TAN F, et al. Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learning[J/OL]. Commun Med, 2023, 3(1): 59 [2025-01-18]. https://www.nature.com/articles/s43856-023-00282-0. DOI: 10.1038/s43856-023-00282-0.
[41]
BROCKMOELLER S, ECHLE A, LALEH N G, et al. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer[J]. J Pathol, 2022, 256(3): 269-281. DOI: 10.1002/path.5831.
[42]
KHAN A, BROUWER N, BLANK A, et al. Computer-assisted diagnosis of lymph node metastases in colorectal cancers using transfer learning with an ensemble model[J/OL]. Mod Pathol, 2023, 36(5): 100118 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S0893395223000236?via%3Dihub. DOI: 10.1016/j.modpat.2023.100118.
[43]
CHUANG W Y, CHEN C C, YU W H, et al. Identification of nodal micrometastasis in colorectal cancer using deep learning on annotation-free whole-slide images[J]. Mod Pathol, 2021, 34(10): 1901-1911. DOI: 10.1038/s41379-021-00838-2.
[44]
TAN L X, LI H, YU J Z, et al. Colorectal cancer lymph node metastasis prediction with weakly supervised transformer-based multi-instance learning[J]. Med Biol Eng Comput, 2023, 61(6): 1565-1580. DOI: 10.1007/s11517-023-02799-x.
[45]
YU G, SUN K, XU C, et al. Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images[J/OL]. Nat Commun, 2021, 12(1): 6311 [2025-01-18]. https://www.nature.com/articles/s41467-021-26643-8#citeas. DOI: 10.1038/s41467-021-26643-8.
[46]
ABAS MOHAMED Y, KHOO B EE, SHAHRIMIE MOHD ASAARI M, et al. Decoding the black box: Explainable AI (XAI) for cancer diagnosis, prognosis, and treatment planning-a state-of-the art systematic review[J/OL]. Int J Med Inform, 2025, 193: 105689 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S1386505624003526?via%3Dihub. DOI: 10.1016/j.ijmedinf.2024.105689.
[47]
YANG Y J, HAN K T, XU Z Y, et al. Development and validation of multiparametric MRI-based interpretable deep learning radiomics fusion model for predicting lymph node metastasis and prognosis in rectal cancer: a two-center study[J/OL]. Acad Radiol, 2024: S1076-6332(24)00889-4 [2025-01-18]. https://www.sciencedirect.com/science/article/abs/pii/S1076633224008894?via%3Dihub. DOI: 10.1016/j.acra.2024.11.045.
[48]
SONG J H, HONG Y Y, KIM E R, et al. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer[J]. J Gastroenterol, 2022, 57(9): 654-666. DOI: 10.1007/s00535-022-01894-4.
[49]
MOHSIN KHAN M, SHAH N, SHAIKH N, et al. Towards secure and trusted AI in healthcare: a systematic review of emerging innovations and ethical challenges[J/OL]. Int J Med Inform, 2024, 195: 105780 [2025-01-18]. https://www.sciencedirect.com/science/article/pii/S138650562400443X?via%3Dihub. DOI: 10.1016/j.ijmedinf.2024.105780.
[50]
ZHANG R, DU X B, YAN J C, et al. The decoupling concept bottleneck model[J]. IEEE Trans Pattern Anal Mach Intell, 2025, 47(2): 1250-1265. DOI: 10.1109/TPAMI.2024.3489597.

PREV Advances in radiomics in accurate diagnosis, treatment and prognosis evaluation of hepatocellular carcinoma
NEXT Progress in diagnosis and treatment of whole-body magnetic resonance imaging in hematologic malignancies
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn