Share:
Share this content in WeChat
X
Clinical Article
Study on cerebral perfusion patterns in premature infants based on multi-delayed arterial spin labeling imaging
CHANG Miao  YUE Songhong  ZHANG Jing 

Cite this article as: CHANG M, YUE S H, ZHANG J. Study on cerebral perfusion patterns in premature infants based on multi-delayed arterial spin labeling imaging[J]. Chin J Magn Reson Imaging, 2025, 16(2): 1-6, 13. DOI:10.12015/issn.1674-8034.2025.02.001.


[Abstract] Objective To explore the changes of cerebral perfusion in premature infants with postmenstrual age (PMA) and the differences in cerebral perfusion between premature infants and normal full-term infants at term equivalent age (TEA) based on multidelay arterial spin labeling (MDASL).Materials and Methods Prospective data collection included 36 premature infants (gestational age < 37 weeks) and 18 normal full-term infants (gestational age ≥ 37 weeks), of which 18 premature infants with TEA were matched with 14 normal full-term infants in terms of PMA. All subjects underwent conventional MRI and MDASL scanning at 3.0 T GE premier. MDASL generated cerebral blood flow (CBF) images from 7 different postlabeling delays (PLD) through 8 acquisitions. The original images were processed by functool software to obtain arterial transit times (ATT) and transit time–corrected cerebral blood flow (tCBF) images. Linear regression was used to analyze the trend of tCBF changes with PMA in premature infants and normal full-term infants, and independent sample t-test was used to analyze the differences in tCBF and ATT between premature infants and full-term infants with TEA.Results The tCBF of all regions (except the pons) of normal full-term and premature infants increased with the increase of PMA (P < 0.05), among which the tCBF of the cerebellar hemisphere changed the most. The change of the cerebellar hemisphere in normal full-term infants (b = 0.829, P < 0.05) was greater than that in premature infants (b = 0.518, P < 0.05). Compared with normal full-term infants, the tCBF of premature infants with TEA was significantly higher in frontal white matter, temporal white matter, occipital white matter, frontal cortex, occipital cortex, lenticular nucleus, caudate nucleus, thalamus, hippocampus, cerebellar hemisphere and pons (P < 0.05). ATT in frontal cortex, thalamus and hippocampus of normal full-term infants was longer than that of premature TEA infants (P < 0.05).Conclusions MDASL can more accurately show the regional differences in cerebral perfusion between premature infants and normal full-term infants and the spatiotemporal trajectory of early brain development.
[Keywords] premature infants;cerebral blood flow;multidelay arterial spin labeling;magnetic resonance imaging;arterial transit times

CHANG Miao1, 2, 3   YUE Songhong1, 2, 3   ZHANG Jing1, 2, 3, 4*  

1 Department of Magnetic Resonance Imaging, the Second Hospital of Lanzhou University, Lanzhou 730030, China

2 The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

4 Gansu Medical MRI Equipment Application Industry Technology Center, Lanzhou 730030, China

Corresponding author: ZHANG J, E-mail: ery_zhangjing@lzu.edu.cn

Conflicts of interest   None.

Received  2024-10-15
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.001
Cite this article as: CHANG M, YUE S H, ZHANG J. Study on cerebral perfusion patterns in premature infants based on multi-delayed arterial spin labeling imaging[J]. Chin J Magn Reson Imaging, 2025, 16(2): 1-6, 13. DOI:10.12015/issn.1674-8034.2025.02.001.

[1]
BELL E F, HINTZ S R, HANSEN N I, et al. Mortality, In-Hospital Morbidity, Care Practices, and 2-Year Outcomes for Extremely Preterm Infants in the US, 2013-2018[J]. JAMA, 2022, 327(3): 248-263. DOI: 10.1001/jama.2021.23580.
[2]
JAIN S, PATEL P, PANDYA N, et al. Neurodevelopmental Outcomes in Preterm Babies: A 12-Month Observational Study[J/OL]. Cureus, 2023, 15(10): e47775 [2024-10-15]. https://dx.doi.org/10.7759/cureus.47775. DOI: 10.7759/cureus.47775.
[3]
HIJMAN A S, WEHRLE F M, LATAL B, et al. Cerebral perfusion differences are linked to executive function performance in very preterm-born children and adolescents[J/OL]. Neuroimage, 2024, 285: 120500 [2024-10-15]. https://dx.doi.org/10.1016/j.neuroimage.2023.120500. DOI: 10.1016/j.neuroimage.2023.120500.
[4]
KIM H G, CHOI J W, LEE J H, et al. Association of Cerebral Blood Flow and Brain Tissue Relaxation Time With Neurodevelopmental Outcomes of Preterm Neonates: Multidelay Arterial Spin Labeling and Synthetic MRI Study[J]. Invest Radiol, 2022, 57(4): 254-262. DOI: 10.1097/rli.0000000000000833.
[5]
PICCIRILLI E, CHIARELLI A M, SESTIERI C, et al. Cerebral blood flow patterns in preterm and term neonates assessed with pseudo-continuous arterial spin labeling perfusion MRI[J]. Hum Brain Mapp, 2023, 44(9): 3833-3844. DOI: 10.1002/hbm.26315.
[6]
DUBOIS M, LEGOUHY A, COROUGE I, et al. Multiparametric Analysis of Cerebral Development in Preterm Infants Using Magnetic Resonance Imaging[J/OL]. Front Neurosci, 2021, 15: 658002 [2024-10-15]. https://dx.doi.org/10.3389/fnins.2021.658002. DOI: 10.3389/fnins.2021.658002.
[7]
CHENG W, ZHAO Y, LIU C, et al. Investigation of the catch-up status and termination for corrected age of neurodevelopment in premature infants of different gestational ages[J]. Transl Pediatr, 2024, 13(11): 1913-1922. DOI: 10.21037/tp-24-243.
[8]
WOODS J G, ACHTEN E, ASLLANI I, et al. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications[J]. Magn Reson Med, 2024, 92(2): 469-495. DOI: 10.1002/mrm.30091.
[9]
KIM H G, LEE J H, CHOI J W, et al. Multidelay Arterial Spin-Labeling MRI in Neonates and Infants: Cerebral Perfusion Changes during Brain Maturation[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1912-1918. DOI: 10.3174/ajnr.A5774.
[10]
ZHAO M Y, FAN A P, CHEN D Y, et al. Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya disease: Insights from simultaneous PET/MRI[J]. J Cereb Blood Flow Metab, 2022, 42(8): 1493-1506. DOI: 10.1177/0271678x221083471.
[11]
HU Y, ZHANG K, LIU R. The effect of post-labeling delay on cerebral blood flow is influenced by age and sex: a study based on arterial spin-labeling magnetic resonance imaging[J]. Quant Imaging Med Surg, 2024, 14(7): 4388-4402. DOI: 10.21037/qims-23-1622.
[12]
LI Q Q, CHEN F, ZHONG J G, et al. Application of multiple post labeling delay time arterial spin labeling imaging in the quantitative blood flow analysis of brain subregions in healthy adults[J]. Zhonghua Nei Ke Za Zhi, 2022, 61(8): 908-915. DOI: 10.3760/cma.j.cn112138-20211013-00703.
[13]
VAN DER THIEL M, RODRIGUEZ C, GIANNAKOPOULOS P, et al. Brain Perfusion Measurements Using Multidelay Arterial Spin-Labeling Are Systematically Biased by the Number of Delays[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1432-1438. DOI: 10.3174/ajnr.A5717.
[14]
GOLAY X, HO M L. Multidelay ASL of the pediatric brain[J/OL]. Br J Radiol, 2022, 95(1134): 20220034 [2024-10-15]. https://dx.doi.org/10.1259/bjr.20220034. DOI: 10.1259/bjr.20220034.
[15]
HU Y, LV F, LI Q, et al. Effect of post-labeling delay on regional cerebral blood flow in arterial spin-labeling MR imaging[J/OL]. Medicine (Baltimore), 2020, 99(27): e20463 [2024-10-15]. https://dx.doi.org/10.1097/md.0000000000020463. DOI: 10.1097/md.0000000000020463.
[16]
DAI W, FONG T, JONES R N, et al. Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort[J]. J Magn Reson Imaging, 2017, 45(2): 472-481. DOI: 10.1002/jmri.25367.
[17]
HARA S, TANAKA Y, UEDA Y, et al. Noninvasive Evaluation of CBF and Perfusion Delay of Moyamoya Disease Using Arterial Spin-Labeling MRI with Multiple Postlabeling Delays: Comparison with (15)O-Gas PET and DSC-MRI[J]. AJNR Am J Neuroradiol, 2017, 38(4): 696-702. DOI: 10.3174/ajnr.A5068.
[18]
LINDNER T, CHENG B, HEINZE M, et al. A comparative study of multi and single post labeling delay pseudocontinuous arterial spin labeling in patients with carotid artery stenosis[J]. Magn Reson Imaging, 2024, 106: 18-23. DOI: 10.1016/j.mri.2023.11.011.
[19]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[20]
COHEN A D, AGARWAL M, JAGRA A S, et al. Longitudinal Reproducibility of MR Perfusion Using 3D Pseudocontinuous Arterial Spin Labeling With Hadamard-Encoded Multiple Postlabeling Delays[J]. J Magn Reson Imaging, 2020, 51(6): 1846-1853. DOI: 10.1002/jmri.27007.
[21]
CHUGANI H T. Imaging Brain Metabolism in the Newborn[J]. J Child Neurol, 2018, 33(13): 851-860. DOI: 10.1177/0883073818792308.
[22]
QIN C, ZHAO X, SHEN Y, et al. Evaluation of the effect of intraventricular haemorrhage on cerebral perfusion in preterm neonates using three-dimensional pseudo-continuous arterial spin labelling[J]. Pediatr Radiol, 2024, 54(5): 776-786. DOI: 10.1007/s00247-024-05865-0.
[23]
ZUN Z, KAPSE K, JACOBS M, et al. Longitudinal Trajectories of Regional Cerebral Blood Flow in Very Preterm Infants during Third Trimester Ex Utero Development Assessed with MRI[J]. Radiology, 2021, 299(3): 691-702. DOI: 10.1148/radiol.2021202423.
[24]
LIMPEROPOULOS C, SOUL J S, GAUVREAU K, et al. Late gestation cerebellar growth is rapid and impeded by premature birth[J]. Pediatrics, 2005, 115(3): 688-695. DOI: 10.1542/peds.2004-1169.
[25]
TATARANNO M L, CLAESSENS N H P, MOESKOPS P, et al. Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants[J]. Pediatr Res, 2018, 83(4): 834-842. DOI: 10.1038/pr.2017.314.
[26]
CONTE S, ZIMMERMAN D, RICHARDS J E. White matter trajectories over the lifespan[J/OL]. PLoS One, 2024, 19(5): e0301520 [2024-10-15]. https://dx.doi.org/10.1371/journal.pone.0301520. DOI: 10.1371/journal.pone.0301520.
[27]
LEHTOLA S J, TUULARI J J, KARLSSON L, et al. Associations of age and sex with brain volumes and asymmetry in 2-5-week-old infants[J]. Brain Struct Funct, 2019, 224(1): 501-513. DOI: 10.1007/s00429-018-1787-x.
[28]
OUYANG M, LIU P, JEON T, et al. Heterogeneous increases of regional cerebral blood flow during preterm brain development: Preliminary assessment with pseudo-continuous arterial spin labeled perfusion MRI[J]. Neuroimage, 2017, 147: 233-242. DOI: 10.1016/j.neuroimage.2016.12.034.
[29]
BOUYSSI-KOBAR M, MURNICK J, BROSSARD-RACINE M, et al. Altered Cerebral Perfusion in Infants Born Preterm Compared with Infants Born Full Term[J/OL]. J Pediatr, 2018, 193: 54-61.e2 [2024-10-15]. https://dx.doi.org/10.1016/j.jpeds.2017.09.083. DOI: 10.1016/j.jpeds.2017.09.083.
[30]
CHANDRA SEKHAR P, RANGASAMI R, ANDREW C, et al. Measurement of apparent diffusion coefficient (ADC) in fetal organs and placenta using 3 Tesla magnetic resonance imaging (MRI) across gestational ages[J/OL]. Sci Rep, 2024, 14(1): 23811 [2024-10-15]. https://dx.doi.org/10.1038/s41598-024-73902-x. DOI: 10.1038/s41598-024-73902-x.
[31]
ANDERSEN J B, LINDBERG U, OLESEN O V, et al. Hybrid PET/MRI imaging in healthy unsedated newborn infants with quantitative rCBF measurements using (15)O-water PET[J]. J Cereb Blood Flow Metab, 2019, 39(5): 782-793. DOI: 10.1177/0271678x17751835.
[32]
BREW N, WALKER D, WONG F Y.Cerebral vascular regulation and brain injury in preterm infants[J/OL]. Am J Physiol Regul Integr Comp Physiol, 2014, 306(11): R773-786 [2024-10-15]. https://dx.doi.org/10.1152/ajpregu.00487.2013. DOI: 10.1152/ajpregu.00487.2013.
[33]
FYFE K L, YIALLOUROU S R, WONG F Y, et al. The development of cardiovascular and cerebral vascular control in preterm infants[J]. Sleep Med Rev, 2014, 18(4): 299-310. DOI: 10.1016/j.smrv.2013.06.002.
[34]
RHEE C J, DA COSTA C S, AUSTIN T, et al. Neonatal cerebrovascular autoregulation[J]. Pediatr Res, 2018, 84(5): 602-610. DOI: 10.1038/s41390-018-0141-6.
[35]
DE VIS J B, HENDRIKSE J, GROENENDAAL F, et al. Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: Implications for arterial spin labelling MRI[J]. Neuroimage Clin, 2014, 4: 517-525. DOI: 10.1016/j.nicl.2014.03.006.

PREV Progress in diagnosis and treatment of whole-body magnetic resonance imaging in hematologic malignancies
NEXT 3D-pCASL in the developmental brain abnormalities of preterm infants born to hypertensive mothers during pregnancy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn