Share:
Share this content in WeChat
X
Clinical Article
Comparative study of myocardial mechanical function changes before and after coronary artery bypass grafting using cardiac magnetic resonance feature tracking technique
BAN Chao  MA Xueying  WANG Jian  WANG Xin  QIAN Xinyu  CHAI Shengjie  NIU Ruilong  GE Lihong 

Cite this article as: BAN C, MA X Y, WANG J, et al. Comparative study of myocardial mechanical function changes before and after coronary artery bypass grafting using cardiac magnetic resonance feature tracking technique[J]. Chin J Magn Reson Imaging, 2025, 16(2): 29-34, 43. DOI:10.12015/issn.1674-8034.2025.02.005.


[Abstract] Objective To explore the application value of cardiac magnetic resonance imaging feature tracking (CMR-FT) technology inassessing the changes in myocardial mechanical function before and after coronary artery bypass grafting (CABG) in patients.Materials and Methods A total of 35 patients with coronary heart disease (CHD) who underwent coronary artery bypass grafting were selected, and 35 healthy volunteers were recruited as a control group. Both groups underwent CMR-FT examination, with myocardial mechanical function measured using united imaging healthcare's artificial intelligence technology and manually calibrated. CMR-FT was used to analyze the myocardial mechanical function of the left ventricle and obtain relevant parameters. To analyze the normality of variables using the Shapiro-Wilk test, variables that do not follow a normal distribution (circumferential displacement, circumferential velocity, circumferential strain rate, short-axis radial displacement, short-axis radial strain rate, longitudinal velocity, longitudinal strain rate, and longitudinal radial strain rate) should undergo the Wilcoxon rank-sum test for inter-group differences. Variables that follow a normal distribution (circumferential strain, short-axis radial velocity, short-axis radial strain, longitudinal displacement, longitudinal strain, long-axis radial displacement, long-axis radial velocity, and long-axis radial strain) should undergo the paired-samples t-test for inter-group differences.Results In the comparison between pre- and post-CABG patients, short-axis radial strain, longitudinal strain, and long-axis radial strain were significantly greater before surgery than after, with statistical significance (P < 0.05). In the comparison between post-CABG patients and the normal control group, circumferential strain, short-axis radial strain, short-axis radial strain rate, longitudinal strain, long-axis radial velocity, and long-axis radial strain were significantly greater in the control group than in post-operative patients, with statistical significance (P < 0.05). The results indicate that there has been no significant improvement in myocardial mechanical function following the surgery.Conclusions CMR-FT can accurately assess changes in myocardial mechanical function in patients before and after CABG,It has important clinical significance for guiding personalized treatment and improving patient prognosis.
[Keywords] coronary heart disease;coronary artery bypass grafting;magnetic resonance imaging;cardiac magnetic resonance feature tracking technology;myocardial mechanical function

BAN Chao   MA Xueying   WANG Jian   WANG Xin   QIAN Xinyu   CHAI Shengjie   NIU Ruilong   GE Lihong*  

Imaging Diagnosis Department, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: GE L H, E-mail: Lchest@126.com

Conflicts of interest   None.

Received  2024-08-20
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.005
Cite this article as: BAN C, MA X Y, WANG J, et al. Comparative study of myocardial mechanical function changes before and after coronary artery bypass grafting using cardiac magnetic resonance feature tracking technique[J]. Chin J Magn Reson Imaging, 2025, 16(2): 29-34, 43. DOI:10.12015/issn.1674-8034.2025.02.005.

[1]
VIRANI S S, KRISTIN NEWBY L, ARNOLD S V, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American heart association/American college of cardiology joint committee on clinical practice guidelines[J/OL]. Circulation, 2023, 148(9): e9-e119 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/37471501/. DOI: 10.1161/CIR.0000000000001168.
[2]
HEUSCH G. Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease[J]. Med, 2024, 5(1): 10-31. DOI: 10.1016/j.medj.2023.12.007.
[3]
BLÖNDAL M, AINLA T, EHA J, et al. Comparison of management and outcomes of ST-segment elevation myocardial infarction patients in Estonia, Hungary, Norway, and Sweden according to national ongoing registries[J]. Eur Heart J Qual Care Clin Outcomes, 2022, 8(3): 307-314. DOI: 10.1093/ehjqcco/qcaa098.
[4]
National Center for Cardiovascular Diseases, The Writing Committee of the Report on Cardiovascular Health, CHINA D I. Report on cardiovascular health and diseases in China 2023: an updated summary[J]. Chin Circ J, 2024, 39(7): 625-660. DOI: 10.3969/j.issn.1000-3614.2024.07.001.
[5]
FADAH K, HECHANOVA A, MUKHERJEE D. Epidemiology, pathophysiology, and management of coronary artery disease in the elderly[J]. Int J Angiol, 2022, 31(4): 244-250. DOI: 10.1055/s-0042-1751234.
[6]
RALAPANAWA U, SIVAKANESAN R. Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: a narrative review[J]. J Epidemiol Glob Health, 2021, 11(2): 169-177. DOI: 10.2991/jegh.k.201217.001.
[7]
JIA S D, LIU Y, YUAN J Q. Evidence in guidelines for treatment of coronary artery disease[J/OL]. Adv Exp Med Biol, 2020, 1177: 37-73 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/32246443/. DOI: 10.1007/978-981-15-2517-9_2.
[8]
FARMER D, JIMENEZ E. Re-evaluating the role of CABG in acute coronary syndromes[J/OL]. Curr Cardiol Rep, 2020, 22(11): 148 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/32944807/. DOI: 10.1007/s11886-020-01386-y.
[9]
DUGGAN J P, PETERS A S, TRACHIOTIS G D, et al. Epidemiology of coronary artery disease[J]. Surg Clin North Am, 2022, 102(3): 499-516. DOI: 10.1016/j.suc.2022.01.007.
[10]
IRQSUSI M, LOOS D, DIELMANN K, et al. Influence of cardioplegic solution on incidence of delirium after CABG surgery: Use of Calafiore blood cardioplegia versus HTK - Bretschneider - solution in a single-center retrospective analysis from 2017 to 2021[J]. J Card Surg, 2022, 37(12): 4670-4678. DOI: 10.1111/jocs.17059.
[11]
GRÖSCHEL J, KUHNT J, VIEZZER D, et al. Comparison of manual and artificial intelligence based quantification of myocardial strain by feature tracking: a cardiovascular MR study in health and disease[J]. Eur Radiol, 2024, 34(2): 1003-1015. DOI: 10.1007/s00330-023-10127-y.
[12]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[13]
FORLEO C, CARELLA M C, BASILE P, et al. The role of magnetic resonance imaging in cardiomyopathies in the light of new guidelines: a focus on tissue mapping[J/OL]. J Clin Med, 2024, 13(9): 2621 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/38731153/. DOI: 10.3390/jcm13092621.
[14]
GRÖSCHEL J, GRASSOW L, VAN DIJCK P, et al. Trajectories of functional and structural myocardial parameters in post-COVID-19 syndrome-insights from mid-term follow-up by cardiovascular magnetic resonance[J/OL]. Front Cardiovasc Med, 2024, 11: 1357349 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/38628318/. DOI: 10.3389/fcvm.2024.1357349.
[15]
MUSCOGIURI G, FUSINI L, RICCI F, et al. Additional diagnostic value of cardiac magnetic resonance feature tracking in patients with biopsy-proven arrhythmogenic cardiomyopathy[J/OL]. Int J Cardiol, 2021, 339: 203-210 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/34242689/. DOI: 10.1016/j.ijcard.2021.06.052.
[16]
GUGLIELMO M, ARANGALAGE D, BONINO M A, et al. Additional value of cardiac magnetic resonance feature tracking parameters for the evaluation of the arrhythmic risk in patients with mitral valve prolapse[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 32 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/37316826/. DOI: 10.1186/s12968-023-00944-x.
[17]
CERQUEIRA M D, WEISSMAN N J, DILSIZIAN V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association[J]. Circulation, 2002, 105(4): 539-542. DOI: 10.1161/hc0402.102975.
[18]
BELLEY-COTE E P, LAMY A, DEVEREAUX P J, et al. Definitions of post-coronary artery bypass grafting myocardial infarction: variations in incidence and prognostic significance[J]. Eur J Cardiothorac Surg, 2020, 57(1): 168-175. DOI: 10.1093/ejcts/ezz161.
[19]
THIELMANN M, SHARMA V, AL-ATTAR N, et al. ESC joint working groups on cardiovascular surgery and the cellular biology of the heart position paper: perioperative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery[J]. Eur Heart J, 2017, 38(31): 2392-2407. DOI: 10.1093/eurheartj/ehx383.
[20]
BULLUCK H, PARADIES V, BARBATO E, et al. Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI)[J]. Eur Heart J, 2021, 42(27): 2630-2642. DOI: 10.1093/eurheartj/ehab271.
[21]
BAN C, MA X Y, WANG J, et al. Comparative study of cardiac function changes before and after coronary artery bypass grafting based on MRI[J]. Chin J Magn Reson Imag, 2023, 14(3): 95-99, 116. DOI: 10.12015/issn.1674-8034.2023.03.016.
[22]
SUN Z, WANG Y, HU Y Y, et al. Left ventricular dyssynchrony measured by cardiovascular magnetic resonance-feature tracking in anterior ST-elevation myocardial infarction: relationship with microvascular occlusion myocardial damage[J/OL]. Front Cardiovasc Med, 2023, 10: 1255063 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/37900576/. DOI: 10.3389/fcvm.2023.1255063.
[23]
DUO G S, LIU T, DAI X. Clinical evaluation of cardiac magnetic resonance tissue tracking technology for coronary heart disease patients with myocardial infarction[J]. Chin J Magn Reson Imag, 2018, 9(5): 346-353. DOI: 10.12015/issn.1674-8034.2018.05.005.
[24]
VALLABHANENI S, ZHANG K W, ALVAREZ-CARDONA J A, et al. Role of cardiovascular magnetic resonance in early detection and treatment of cardiac dysfunction in oncology patients[J]. Int J Cardiovasc Imaging, 2021, 37(10): 3003-3017. DOI: 10.1007/s10554-021-02271-7.
[25]
BARISON A, CEOLIN R, PALMIERI A, et al. Biventricular tissue tracking with cardiovascular magnetic resonance: reference values of left- and right-ventricular strain[J/OL]. Diagnostics, 2023, 13(18): 2912 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/37761278/. DOI: 10.3390/diagnostics13182912.
[26]
KONG H H, CAO J X, TIAN J F, et al. Evaluation of left ventricular diastolic function in patients with coronary microvascular dysfunction via cardiovascular magnetic resonance feature tracking[J]. Quant Imaging Med Surg, 2023, 13(10): 7281-7293. DOI: 10.21037/qims-23-47.
[27]
LI H, ZHENG Y, PENG X, et al. Heart failure with preserved ejection fraction in post myocardial infarction patients: a myocardial magnetic resonance (MR) tissue tracking study[J]. Quant Imaging Med Surg, 2023, 13(3): 1723-1739. DOI: 10.21037/qims-22-793.
[28]
YAN Y, YANG F, ZHANG Z, et al. Assessment of early right ventricular dysfunction in pulmonary hypertension patients using cardiovascular magnetic resonance feature tracking technique[J]. Radiol Pract, 2022, 37(3): 312-317. DOI: 10.13609/j.cnki.1000-0313.2022.03.006.
[29]
WEN X L, GAO Y, GUO Y K, et al. Assessing right ventricular peak strain in myocardial infarction patients with mitral regurgitation by cardiac magnetic resonance feature tracking[J]. Quant Imaging Med Surg, 2024, 14(4): 3018-3032. DOI: 10.21037/qims-23-1360.
[30]
BOURFISS M, PRAKKEN N J, JAMES C A, et al. Prognostic value of strain by feature-tracking cardiac magnetic resonance in arrhythmogenic right ventricular cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2022, 24(1): 98-107. DOI: 10.1093/ehjci/jeac030.
[31]
XU S F, WANG Z X, ZHAO S, et al. Value of cardiac magnetic resonance feature tracking technique in evaluating cardiac function during chemotherapy in breast cancer patients[J]. Chin J Magn Reson Imag, 2024, 15(5): 87-93. DOI: 10.12015/issn.1674-8034.2024.05.015.
[32]
YUE X, LIU L, PENG P F, et al. Value of the CMR feature tracking technique in the assessment of the left heart in patients with Parkinson's disease[J]. Chin J Magn Reson Imag, 2024, 15(3): 74-80. DOI: 10.12015/issn.1674-8034.2024.03.013.
[33]
DOERNER J, BUNCK A C, MICHELS G, et al. Incremental value of cardiovascular magnetic resonance feature tracking derived atrial and ventricular strain parameters in a comprehensive approach for the diagnosis of acute myocarditis[J/OL]. Eur J Radiol, 2018, 104: 120-128 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/29857857/. DOI: 10.1016/j.ejrad.2018.05.012.
[34]
ZHU X Y, SHI Y, LIAN J X, et al. Left atrial and left ventricular strain in feature-tracking cardiac magnetic resonance for predicting patients at high risk of sudden cardiac death in hypertrophic cardiomyopathy[J]. Quant Imaging Med Surg, 2024, 14(5): 3544-3556. DOI: 10.21037/qims-23-1615.
[35]
TAN Z K, YANG Y L, WU X Y, et al. Left atrial remodeling and the prognostic value of feature tracking derived left atrial strain in patients with light-chain amyloidosis: a cardiovascular magnetic resonance study[J]. Int J Cardiovasc Imaging, 2022, 38(7): 1519-1532. DOI: 10.1007/s10554-022-02534-x.
[36]
KASHYAP N, NIKHANJ A, LABIB D, et al. Prognostic utility of cardiovascular magnetic resonance-based phenotyping in patients with muscular dystrophy[J/OL]. J Am Heart Assoc, 2023, 12(21): e030229 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/37929714/. DOI: 10.1161/JAHA.123.030229.
[37]
WANG Y J, YANG K, WEN Y, et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging[J]. Nat Med, 2024, 30(5): 1471-1480. DOI: 10.1038/s41591-024-02971-2.
[38]
VIRBICKIENE A, LAPINSKAS T, GARLICHS C D, et al. Imaging predictors of left ventricular functional recovery after reperfusion therapy of ST-elevation myocardial infarction assessed by cardiac magnetic resonance[J/OL]. J Cardiovasc Dev Dis, 2023, 10(7): 294 [2024-08-19]. https://pubmed.ncbi.nlm.nih.gov/37504550/. DOI: 10.3390/jcdd10070294.

PREV A multicenter study of 2.5D convolutional neural networks based on multi-sequence MRI in distinguishing meningioma
NEXT Application value of radiomics based on DCE-MRI combined with DKI in predicting triple-negative breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn