Share:
Share this content in WeChat
X
Clinical Article
The value of Gd-EOB-DTPA-enhanced MRI radiomics in predicting Glypican-3 positive expression in hepatocellular carcinoma
LI Yaosen  DAI Hui  FENG Mengmeng  LIU Yuanqing  MIAO Huanmin 

Cite this article as: LI Y S, DAI H, FENG M M, et al. The value of Gd-EOB-DTPA-enhanced MRI radiomics in predicting Glypican-3 positive expression in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(2): 44-50, 58. DOI:10.12015/issn.1674-8034.2025.02.007.


[Abstract] Objective To investigate the radiomics prediction of Glypican-3 (GPC3) positive expression in hepatocellular carcinoma (HCC) based on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) MRI.Materials and Methods The clinical indicators, MRI plain scan and enhanced imaging data of 126 HCC patients with GPC3 positive (77 cases) and negative (49 cases) in the First Affiliated Hospital of Suzhou University from January 2016 to June 2023 were retrospectively collected and analyzed. The clinical indicators included age, gender, hepatitis B infection, hepatitis B core antibody, alpha-fetoprotein (AFP), carbohydrate antigen 199 (CA199), carbohydrate antigen 125 (CA125). The patients received hepatectomy or needle biopsy, and Gd-EOB-DTPA MRI was performed within one month before the operation. Manually delineate the three-dimensional volume of interest of the lesion on five sequences of arterial phase AP, portal venous phase PVP, transitional phase TP, hepatobiliary phase HBP, and T2 weighted imaging T2WI in the transverse axis of MRI images, and extract the radiomics features of the lesion. After Pearson correlation analysis feature screening, the least absolute shrinkage and selection operator (LASSO) regression feature dimensionality reduction was performed to construct logistic regression models for clinical indicators, single sequences, and multiple sequences. Clinical indicators were combined with feature subsets from multiple sequence omics to construct a comprehensive nomogram for predicting GPC3 positive expression in HCC. Perform calibration curves to validate the comprehensive model of clinical indicators combined with multi-sequence omics, and use decision curve analysis to evaluate clinical utility.Results The infection of AFP and hepatitis B in the clinical indicators was independently related to the positive expression of GPC3. The area under the receiver operating characteristic curve (AUC) for the clinical indicator model training set is 0.827 (95% CI: 0.742 to 0.913), while the AUC for the test set is 0.779 (95% CI: 0.632 to 0.925). The radiomics models based on single-sequence MRI, including AP, PVP, TP, HBP, and T2WI sequences, demonstrate moderate predictive performance, with AUC values for the training set of 0.804 (95% CI: 0.713 to 0.894), 0.801 (95% CI: 0.711 to 0.892), 0.796 (95% CI: 0.706 to 0.887), 0.761 (95% CI: 0.660 to 0.863), 0.733 (95% CI: 0.620 to 0.845), respectively. The AUC values for the test set are 0.724 (95% CI: 0.555 to 0.894), 0.755 (95% CI: 0.597 to 0.912), 0.770 (95% CI: 0.619 to 0.920), 0.782 (95% CI: 0.610 to 0.947), 0.730 (95% CI: 0.561 to 0.900), respectively. The multi-sequence MRI radiomics model has an AUC value of 0.930 (95% CI: 0.879 to 0.981) for the training set and 0.870 (95% CI: 0.751 to 0.989) for the test set. The combined clinical indicators and multi-sequence radiomics comprehensive model shows good predictive performance, with an AUC value of 0.958 (95% CI: 0.919 to 0.997) for the training set and 0.903 (95% CI: 0.808 to 0.998) for the test set, a sensitivity of 86.4%, and a specificity of 86.7%. The calibration curve showed that the predicted GPC3 status was in good consistency with the actual GPC3 states. Decision curve analysis shows that the comprehensive model has good clinical practicality.Conclusions A preoperative comprehensive nomogram based on clinical indicators and multi-sequence MRI radiomics can non-invasively and effectively predict GPC3 positive expression in HCC.
[Keywords] hepatocellular carcinoma;Glypican-3;Gd-EOB-DTPA;magnetic resonance imaging;radiomics

LI Yaosen1, 2   DAI Hui1   FENG Mengmeng1   LIU Yuanqing1   MIAO Huanmin1*  

1 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

2 Department of Radiology, Wuxi Huishan Traditional Chinese Medicine Hospital, Wuxi 214100, China

Corresponding author: MIAO H M, E-mail: miaohuanmin35@163.com

Conflicts of interest   None.

Received  2024-09-20
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.007
Cite this article as: LI Y S, DAI H, FENG M M, et al. The value of Gd-EOB-DTPA-enhanced MRI radiomics in predicting Glypican-3 positive expression in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(2): 44-50, 58. DOI:10.12015/issn.1674-8034.2025.02.007.

[1]
GUO M, ZHANG H L, ZHENG J M, et al. Glypican-3: a new target for diagnosis and treatment of hepatocellular carcinoma[J]. J Cancer, 2020, 11(8): 2008-2021. DOI: 10.7150/jca.39972.
[2]
MA Y N, JIANG X M, SONG P P, et al. Neoadjuvant therapies in resectable hepatocellular carcinoma: Exploring strategies to improve prognosis[J]. Biosci Trends, 2024, 18(1): 21-41. DOI: 10.5582/bst.2023.01436.
[3]
KARAOĞULLARINDAN Ü, GÜMÜRDÜLÜ Y, ÜSKÜDAR O, et al. Prognostic value and morphological findings of overexpression of glypican-3 in hepatocellular carcinoma[J]. Eur J Gastroenterol Hepatol, 2023, 35(1): 89-93. DOI: 10.1097/MEG.0000000000002452.
[4]
SCHEPERS E J, GLASER K, ZWOLSHEN H M, et al. Structural and functional impact of posttranslational modification of glypican-3 on liver carcinogenesis[J]. Cancer Res, 2023, 83(12): 1933-1940. DOI: 10.1158/0008-5472.CAN-22-3895.
[5]
HUANG E P, O'CONNOR J P B, MCSHANE L M, et al. Criteria for the translation of radiomics into clinically useful tests[J]. Nat Rev Clin Oncol, 2023, 20(2): 69-82. DOI: 10.1038/s41571-022-00707-0.
[6]
GU D S, XIE Y S, WEI J W, et al. MRI-based radiomics signature: a potential biomarker for identifying glypican 3-positive hepatocellular carcinoma[J]. J Magn Reson Imaging, 2020, 52(6): 1679-1687. DOI: 10.1002/jmri.27199.
[7]
KITAO A, MATSUI O, YONEDA N, et al. Gadoxetic acid-enhanced MR imaging for hepatocellular carcinoma: molecular and genetic background[J]. Eur Radiol, 2020, 30(6): 3438-3447. DOI: 10.1007/s00330-020-06687-y.
[8]
WEI J W, JIANG H Y, GU D S, et al. Radiomics in liver diseases: Current progress and future opportunities[J]. Liver Int, 2020, 40(9): 2050-2063. DOI: 10.1111/liv.14555.
[9]
ZHENG J, DU P Z, YANG C, et al. DCE-MRI-based radiomics in predicting angiopoietin-2 expression in hepatocellular carcinoma[J]. Abdom Radiol, 2023, 48(11): 3343-3352. DOI: 10.1007/s00261-023-04007-8.
[10]
DEFOUR L B, MULÉ S, TENENHAUS A, et al. Hepatocellular carcinoma: CT texture analysis as a predictor of survival after surgical resection[J]. Eur Radiol, 2019, 29(3): 1231-1239. DOI: 10.1007/s00330-018-5679-5.
[11]
JI G W, ZHU F P, XU Q, et al. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: a multi-institutional study[J]. Radiology, 2020, 294(3): 568-579. DOI: 10.1148/radiol.2020191470.
[12]
YEO Y H, LEE Y T, TSENG H R, et al. Alpha-fetoprotein: past, present, and future[J/OL]. Hepatol Commun, 2024, 8(5): e0422 [2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/38619448/. DOI: 10.1097/HC9.0000000000000422.
[13]
SAITO S, OJIMA H, ICHIKAWA H, et al. Molecular background of α-fetoprotein in liver cancer cells as revealed by global RNA expression analysis[J]. Cancer Sci, 2008, 99(12): 2402-2409. DOI: 10.1111/j.1349-7006.2008.00973.x.
[14]
WÖLFEL G, OSTHEIM E, STAUB A, et al. The p53 family of transcription factors represses the alpha- fetoprotein gene expression in hepatocellular carcinoma[J]. J Gastrointestin Liver Dis, 2023, 32(3): 346-355. DOI: 10.15403/jgld-4055.
[15]
MORFORD L A, DAVIS C, JIN L, et al. The oncofetal gene glypican 3 is regulated in the postnatal liver by zinc fingers and homeoboxes 2 and in the regenerating liver by alpha-fetoprotein regulator 2[J]. Hepatology, 2007, 46(5): 1541-1547. DOI: 10.1002/hep.21825.
[16]
AERTS H J W L, VELAZQUEZ E R, LEIJENAAR R T H, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J/OL]. Nat Commun, 2014, 5: 4006 [2024-01-29]. https://pubmed.ncbi.nlm.nih.gov/24892406/. DOI: 10.1038/ncomms5006.
[17]
QU C M, WANG Q, LI C F, et al. A radiomics model based on Gd-EOB-DTPA-enhanced MRI for the prediction of microvascular invasion in solitary hepatocellular carcinoma≤5 cm[J/OL]. Front Oncol, 2022, 12: 831795 [2024-02-07] https://pubmed.ncbi.nlm.nih.gov/35664790/. DOI: 10.3389/fonc.2022.831795.
[18]
WANG D D, ZHANG L H, SUN Z Q, et al. A radiomics signature associated with underlying gene expression pattern for the prediction of prognosis and treatment response in hepatocellular carcinoma[J/OL]. Eur J Radiol, 2023, 167: 111086 [2024-02-13]. https://pubmed.ncbi.nlm.nih.gov/37708675/. DOI: 10.1016/j.ejrad.2023.111086.
[19]
OHIRA R, YANAGAWA M, SUZUKI Y, et al. CT-based radiomics analysis for differentiation between thymoma and thymic carcinoma[J]. J Thorac Dis, 2022, 14(5): 1342-1352. DOI: 10.21037/jtd-21-1948.
[20]
MUNDT P, THARMASEELAN H, HERTEL A, et al. Periaortic adipose radiomics texture features associated with increased coronary calcium score-first results on a photon-counting-CT[J/OL]. BMC Med Imaging, 2023, 23(1): 97 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/37495950/. DOI: 10.1186/s12880-023-01058-7.
[21]
GENG Z J, ZHANG Y F, WANG S T, et al. Radiomics analysis of susceptibility weighted imaging for hepatocellular carcinoma: exploring the correlation between histopathology and radiomics features[J]. Magn Reson Med Sci, 2021, 20(3): 253-263. DOI: 10.2463/mrms.mp.2020-0060.
[22]
ZHANG Y, SHU Z Y, YE Q, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma via multi-parametric MRI radiomics[J/OL]. Front Oncol, 2021, 11: 633596 [2024-04-16]. https://pubmed.ncbi.nlm.nih.gov/33747956/. DOI: 10.3389/fonc.2021.633596.
[23]
MATSUMOTO S, KIKUCHI A.Wnt/β-catenin signaling pathway in liver biology and tumorigenesis[J]. In Vitro Cell Dev Biol Anim, 2024, 60(5): 466-481. DOI: 10.1007/s11626-024-00858-7.
[24]
WANG P F, TONG K, LI Y, et al. The role and mechanism of HIF-1α-mediated glypican-3 secretion in hypoxia-induced tumor progression in hepatocellular carcinoma[J/OL]. Cell Signal, 2024, 114: 111007 [2024-08-18]. https://pubmed.ncbi.nlm.nih.gov/38081444/. DOI: 10.1016/j.cellsig.2023.111007.
[25]
XU L F, LI J, HOU N N, et al. 20(S)-Ginsenoside Rh2 inhibits hepatocellular carcinoma by suppressing angiogenesis and the GPC3-mediated Wnt/β-catenin signaling pathway[J]. Acta Biochim Biophys Sin, 2024, 56(5): 688-696. DOI: 10.3724/abbs.2024038.
[26]
CHUNG J Y, LEE W, LEE O W, et al. Glypican-3 deficiency in liver cancer upregulates MAPK/ERK pathway but decreases cell proliferation[J]. Am J Cancer Res, 2024, 14(7): 3348-3371. DOI: 10.62347/TTNY4279.
[27]
LI S H, HAO L Y, LI N, et al. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review)[J/OL]. Int J Oncol, 2024, 65(3): 88 [2024-09-19]. https://pubmed.ncbi.nlm.nih.gov/39092548/. DOI: 10.3892/ijo.2024.5676.
[28]
GRYZIAK M, KRAJ L, STEC R.The role of tumor-associated macrophages in hepatocellular carcinoma-from bench to bedside: A review[J]. J Gastroenterol Hepatol, 2024, 39(8): 1489-1499. DOI: 10.1111/jgh.16564.
[29]
YU M K, YU H X, WANG H M, et al. Tumor-associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review)[J/OL]. Int J Oncol, 2024, 65(4): 100 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/39239752/. DOI: 10.3892/ijo.2024.5688.
[30]
ROY A M, IYER R, CHAKRABORTY S.The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability[J/OL]. Cell Rep Med, 2023, 4(9): 101170 [2024-07-25]. https://pubmed.ncbi.nlm.nih.gov/37652015/. DOI: 10.1016/j.xcrm.2023.101170.
[31]
LIU Q X, SONG Q F, LUO C, et al. A novel bispecific antibody as an immunotherapeutic agent in hepatocellular carcinoma[J]. Mol Immunol, 2023, 162: 125-132. DOI: 10.1016/j.molimm.2023.08.007.
[32]
DU K X, LI Y L, LIU J, et al. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC[J]. Mol Ther, 2021, 29(4): 1572-1584. DOI: 10.1016/j.ymthe.2021.01.006.
[33]
TANIGUCHI M, MIZUNO S, YOSHIKAWA T, et al. Peptide vaccine as an adjuvant therapy for glypican-3-positive hepatocellular carcinoma induces peptide-specific CTLs and improves long prognosis[J]. Cancer Sci, 2020, 111(8): 2747-2759. DOI: 10.1111/cas.14497.
[34]
TOJJARI A, HAFEZ A H, SAEED A, et al. Exploring glypican-3 as a molecular target in hepatocellular carcinoma: perspectives on diagnosis and precision immunotherapy strategies[J/OL]. Front Biosci, 2024, 29(7): 268 [2024-09-16]. https://pubmed.ncbi.nlm.nih.gov/39082348/. DOI: 10.31083/j.fbl2907268.
[35]
KOLLURI A, LI D, LI N, et al. Human VH-based chimeric antigen receptor T cells targeting glypican 3 eliminate tumors in preclinical models of HCC[J/OL]. Hepatol Commun, 2023, 7(2): e0022 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/36691969/. DOI: 10.1097/HC9.0000000000000022.
[36]
SUN R X, LIU Y F, SUN Y S, et al. GPC3-targeted CAR-T cells expressing GLUT1 or AGK exhibit enhanced antitumor activity against hepatocellular carcinoma[J]. Acta Pharmacol Sin, 2024, 45(9): 1937-1950. DOI: 10.1038/s41401-024-01287-8.
[37]
ZHANG J, ZHANG M K, MA H M, et al. Overexpression of glypican-3 is a predictor of poor prognosis in hepatocellular carcinoma: An updated meta-analysis[J/OL]. Medicine, 2018, 97(24): e11130 [2024-07-18]. https://pubmed.ncbi.nlm.nih.gov/29901640/. DOI: 10.1097/MD.0000000000011130.

PREV Application value of radiomics based on DCE-MRI combined with DKI in predicting triple-negative breast cancer
NEXT Development and validation of a model for predicting pathological grade of intrahepatic mass-forming cholangiocarcinoma based on intratumoral and peritumoral features on MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn