Share:
Share this content in WeChat
X
Clinical Article
Development and validation of a model for predicting pathological grade of intrahepatic mass-forming cholangiocarcinoma based on intratumoral and peritumoral features on MRI
LI Xiaomeng  XING Lihong  ZHUO Liyong  LIU Xueyan  DAI Shuo  DONG Jinghui  ZHANG Yanyan  LI Hongjun  YIN Xiaoping 

Cite this article as: LI X M, XING L H, ZHUO L Y, et al. Development and validation of a model for predicting pathological grade of intrahepatic mass-forming cholangiocarcinoma based on intratumoral and peritumoral features on MRI[J]. Chin J Magn Reson Imaging, 2025, 16(2): 51-58. DOI:10.12015/issn.1674-8034.2025.02.008.


[Abstract] Objective To explore the value of intratumoral and different peritumoral radiomics features based on T2-weighted imaging (T2WI) and diffusion weighted imaging (DWI), as well as clinical imaging factors, in preoperative prediction of the pathological grade of intrahepatic mass-forming cholangiocarcinoma (IMCC).Materials and Methods A retrospective analysis was conducted on the clinical and preoperative MRI data of 197 patients with IMCC confirmed by postoperative pathology. The region of interest (ROI) of the tumor was delineated on axial T2WI and DWI images, and extended outward by 3 mm, 5 mm, 10 mm, 15 mm, and 20 mm respectively to obtain peritumoral ROIs of different ranges. Radiomics features were extracted by PyRadiomics. Features were screened through homogeneity of variance test, independent sample t-test, recursive feature elimination algorithm and least absolute shrinkage and selection operator. Logistic regression (LR) classifier and 5-fold cross-validation method were used for modeling and verification. Clinical imaging model, intratumoral omics model, peritumoral omics model, intratumoral + peritumoral omics model, dual-sequence fusion model and multimodal combined model were established. The predictive efficacies of each of the above models were compared to select the best model. Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to evaluate the performance of the model. DeLong test was used to compare the differences in AUC. Calibration curve was used to evaluate the fitting ability of the model, and decision curve was used to assess the clinical value of the model.Results In the peritumoral omics models, the DWI 3 mm model shows the best performance, with AUCs of 0.836 and 0.777 in the training set and validation set respectively. Gender, age, lesion location, and vascular involvement are independent predictors of the pathological grade of IMCC. The AUCs of the clinical imaging model in the training set and validation set are 0.658 and 0.614 respectively. The intratumoral + 3 mm peritumoral 3 mm model has the best predictive efficacy, with AUCs of 0.892 and 0.814 in the training set and validation set respectively, which is superior to the dual-sequence fusion model and the multimodal combined model.Conclusions The intratumoral + 3 mm peritumoral radiomics model based on DWI sequence shows the best predictive ability. It can noninvasively predict the pathological grade of IMCC before surgery and provide theoretical guidance for clinical treatment decisions.
[Keywords] intrahepatic mass-forming cholangiocarcinoma;radiomics;peritumoral;pathological grading;magnetic resonance imaging

LI Xiaomeng1, 2   XING Lihong1, 2   ZHUO Liyong1, 2   LIU Xueyan3   DAI Shuo3   DONG Jinghui4   ZHANG Yanyan5   LI Hongjun5   YIN Xiaoping1, 2*  

1 Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China

2 Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding 071000, China

3 School of Mathematical Sciences, Liaocheng University, Liaochen 252000, China

4 Radiology Department, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China

5 Department of Radiology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China

Corresponding author: YIN X P, E-mail: yinxiaoping78@sina.com

Conflicts of interest   None.

Received  2024-09-27
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.008
Cite this article as: LI X M, XING L H, ZHUO L Y, et al. Development and validation of a model for predicting pathological grade of intrahepatic mass-forming cholangiocarcinoma based on intratumoral and peritumoral features on MRI[J]. Chin J Magn Reson Imaging, 2025, 16(2): 51-58. DOI:10.12015/issn.1674-8034.2025.02.008.

[1]
ZHANG H, YANG T, WU M C, et al. Intrahepatic cholangiocarcinoma: Epidemiology, risk factors, diagnosis and surgical management[J]. Cancer Lett, 2016, 379(2): 198-205. DOI: 10.1016/j.canlet.2015.09.008.
[2]
EL-DIWANY R, PAWLIK T M, EJAZ A. Intrahepatic cholangiocarcinoma[J]. Surg Oncol Clin N Am, 2019, 28(4): 587-599. DOI: 10.1016/j.soc.2019.06.002.
[3]
JANG S J, GARDNER J M, RO J Y. Diagnostic approach and prognostic factors of cancers[J]. Adv Anat Pathol, 2011, 18(2): 165-172. DOI: 10.1097/PAP.0b013e31820cb39e.
[4]
European Association for the Study of the Liver. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma[J]. J Hepatol, 2023, 79(1): 181-208. DOI: 10.1016/j.jhep.2023.03.010.
[5]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[6]
XIA T Y, ZHAO B, LI B R, et al. MRI-based radiomics and deep learning in biological characteristics and prognosis of hepatocellular carcinoma: opportunities and challenges[J]. J Magn Reson Imaging, 2024, 59(3): 767-783. DOI: 10.1002/jmri.28982.
[7]
CHEN S, ZHU Y M, WAN L J, et al. Predicting the microvascular invasion and tumor grading of intrahepatic mass-forming cholangiocarcinoma based on magnetic resonance imaging radiomics and morphological features[J]. Quant Imaging Med Surg, 2023, 13(12): 8079-8093. DOI: 10.21037/qims-23-11.
[8]
YANG Y, ZOU X L, ZHOU W, et al. DWI-based radiomic signature: potential role for individualized adjuvant chemotherapy in intrahepatic cholangiocarcinoma after partial hepatectomy[J/OL]. Insights Imaging, 2022, 13(1): 37 [2024-12-03]. https://pubmed.ncbi.nlm.nih.gov/35244793/. DOI: 10.1186/s13244-022-01179-7.
[9]
LIU H F, WANG M, WANG Q, et al. Multiparametric MRI-based intratumoral and peritumoral radiomics for predicting the pathological differentiation of hepatocellular carcinoma[J/OL]. Insights Imaging, 2024, 15(1): 97 [2024-09-12]. https://pubmed.ncbi.nlm.nih.gov/38536542/. DOI: 10.1186/s13244-024-01623-w.
[10]
XIA T Y, ZHOU Z H, MENG X P, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J/OL]. Radiology, 2023, 307(4): e222729 [2024-12-03]. https://pubmed.ncbi.nlm.nih.gov/37097141/. DOI: 10.1148/radiol.222729.
[11]
QIAO J Y, XIE Z Y, MA Y C. Predicting the degree of pathological differentiation of hepatic carcinomas based on enhanced CT radiomics[J]. J Mol Imag, 2024, 47(6): 575-581. DOI: 10.12122/j.issn.1674-4500.2024.06.03.
[12]
XING L H, WANG S P, ZHUO L Y, et al. Comparison of machine learning models using diffusion-weighted images for pathological grade of intrahepatic mass-forming cholangiocarcinoma[J]. J Imaging Inform Med, 2024, 37(5): 2252-2263. DOI: 10.1007/s10278-024-01103-z.
[13]
YANG X Y, YAO Y, ZHAO Y, et al. Pathological grading method of hepatocellular carcinoma based on radiomics[J]. J Comput Appl, 2022, 42(S2): 243-248. DOI: 10.11772/j.issn.1001-9081.
[14]
WU M H, TAN H N, GAO F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature[J]. Eur Radiol, 2019, 29(6): 2802-2811. DOI: 10.1007/s00330-018-5787-2.
[15]
DU G Z, SONG B, YANG W D, et al. Value of CT-based radiomics combined with serum AFP level in predicting pathological grading of liver cancer[J]. China Med Equip, 2021, 18(6): 68-71. DOI: 10.3969/J.ISSN.1672-8270.2021.06.018.
[16]
CONG W M, BU H, CHEN J, et al. Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update[J]. World J Gastroenterol, 2016, 22(42): 9279-9287. DOI: 10.3748/wjg.v22.i42.9279.
[17]
ZHAO H F, FENG Z C, LI H L, et al. Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma[J]. J Cent South Univ Med Sci, 2022, 47(8): 1049-1057. DOI: 10.11817/j.issn.1672-7347.2022.220027.
[18]
WANG S P, WANG X H, YIN X P, et al. Differentiating HCC from ICC and prediction of ICC grade based on MRI deep-radiomics: Using lesions and their extended regions[J/OL]. Phys Med, 2024, 120: 103322 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/38452430/. DOI: 10.1016/j.ejmp.2024.103322.
[19]
LI Q, SONG Z H, LI X J, et al. Development of a CT radiomics nomogram for preoperative prediction of Ki-67 index in pancreatic ductal adenocarcinoma: a two-center retrospective study[J]. Eur Radiol, 2024, 34(5): 2934-2943. DOI: 10.1007/s00330-023-10393-w.
[20]
ZHANG S N, ZHAO N N, LI Y, et al. Value of multimodal radiomics nomogram in predicting axillary lymph node metastasis in invasive ductal carcinoma of the breast before surgery[J]. Chin J Magn Reson Imag, 2024, 15(4): 78-87. DOI: 10.12015/issn.1674-8034.2024.04.013.
[21]
Department of Medical Administration of the National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer (2024 edition)[J]. Chin J Magn Reson Imaging, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[22]
PAN Y J, WU S J, ZENG Y, et al. Intra- and peri-tumoral radiomics based on dynamic contrast enhanced-MRI to identify lymph node metastasis and prognosis in intrahepatic cholangiocarcinoma[J]. J Magn Reson Imaging, 2024, 60(6): 2669-2680. DOI: 10.1002/jmri.29390.
[23]
FIZ F, MASCI C, COSTA G, et al. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3387-3400. DOI: 10.1007/s00259-022-05765-1.
[24]
CHONG H H, GONG Y D, PAN X P, et al. Peritumoral dilation radiomics of gadoxetate disodium-enhanced MRI excellently predicts early recurrence of hepatocellular carcinoma without macrovascular invasion after hepatectomy[J]. J Hepatocell Carcinoma, 2021, 8: 545-563. DOI: 10.2147/JHC.S309570.
[25]
GALEA N, CANTISANI V, TAOULI B. Liver lesion detection and characterization: role of diffusion-weighted imaging[J]. J Magn Reson Imaging, 2013, 37(6): 1260-1276. DOI: 10.1002/jmri.23947.
[26]
LI J P, YANG Y. Clinical study of diffusion-weighted imaging in the diagnosis of liver focal lesion[J/OL]. J Med Syst, 2019, 43(3): 433 [2024-09-22]. https://pubmed.ncbi.nlm.nih.gov/30649629/. DOI: 10.1007/s10916-019-1164-1.
[27]
RONNEKLEIV-KELLY S M, PAWLIK T M. Staging of intrahepatic cholangiocarcinoma[J]. Hepatobiliary Surg Nutr, 2017, 6(1): 35-43. DOI: 10.21037/hbsn.2016.10.02.
[28]
KING M J, HECTORS S, LEE K M, et al. Outcomes assessment in intrahepatic cholangiocarcinoma using qualitative and quantitative imaging features[J/OL]. Cancer Imaging, 2020, 20(1): 43 [2024-09-22]. https://pubmed.ncbi.nlm.nih.gov/32620153/. DOI: 10.1186/s40644-020-00323-0.
[29]
TONG P F, SUN D Q, CHEN G Q, et al. Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal cancer[J/OL]. BMC Cancer, 2023, 23(1): 61 [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/36650498/. DOI: 10.1186/s12885-023-10534-w.
[30]
YIN Y, SEDLACZEK O, MULLER B, et al. Tumor cell load and heterogeneity estimation from diffusion-weighted MRI calibrated with histological data: an example from lung cancer[J]. IEEE Trans Med Imaging, 2018, 37(1): 35-46. DOI: 10.1109/TMI.2017.2698525.
[31]
TAO C M, CHEN Y. Application value of MRI+DWI scanning in differential diagnosis of benign and malignant liver tumors[J]. J Imag Res Med Appl, 2023, 7(19):76-78. DOI: 10.3969/j.issn.2096-3807.2023.19.025.
[32]
XU L, WAN Y D, LUO C, et al. Integrating intratumoral and peritumoral features to predict tumor recurrence in intrahepatic cholangiocarcinoma[J/OL]. Phys Med Biol, 2021, 66(12) [2024-09-23]. https://pubmed.ncbi.nlm.nih.gov/34096890/. DOI: 10.1088/1361-6560/ac01f3.

PREV The value of Gd-EOB-DTPA-enhanced MRI radiomics in predicting Glypican-3 positive expression in hepatocellular carcinoma
NEXT The value of quantitative parameters of diffusion kurtosis imaging in preoperative prediction of tumor budding grade of rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn