Share:
Share this content in WeChat
X
Clinical Article
The value of quantitative parameters of diffusion kurtosis imaging in preoperative prediction of tumor budding grade of rectal cancer
CHEN Anliang  XIE Suling  WANG Yue  DONG Deshuo  TIAN Shifeng  WEI Qiang  LIU Ailian 

Cite this article as: CHEN A L, XIE S L, WANG Y, et al. The value of quantitative parameters of diffusion kurtosis imaging in preoperative prediction of tumor budding grade of rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 59-64, 99. DOI:10.12015/issn.1674-8034.2025.02.009.


[Abstract] Objective To investigate the value of multiple quantitative parameters of magnetic resonance diffusion kurtosis imaging (DKI) in predicting tumor budding (TB) grade of rectal cancer.Materials and Methods Retrospective analysis of data from 113 patients with rectal adenocarcinoma who underwent preoperative 3.0 T MR examination and were confirmed by surgical pathology, including 75 patients in low-medium grade TB group and 38 patients in high grade TB group. The diffusion weighted imaging (DWI) and DKI quantitative parameter values of the lesions in two groups were recorded, including the apparent diffusion coefficient (ADC) value, fractional anisotropy (FA) value, mean diffusivity (MD) value, mean kurtosis (MK) value. The intra-class correlation coefficient (ICC) test was used to evaluate the measurement consistency of each parameter value between two observers. The independent samples t-test or Mann-Whitney U test was used to analyze the differences between the two groups of parameters, and the diagnostic performances of single parameter and combined parameters were evaluated through the receiver operating characteristic (ROC) curve. The DeLong test was used to compare the performance of each parameter.Results The agreement between the two observers for each parameter value was good (ICC > 0.75). The MK value of the low-medium grade group was 0.762 ± 0.127, which was lower than the high grade group with the value of 0.962 ± 0.120. The ADC and MD values of the low-medium grade groups were 1.157 (1.043, 1.317) × 10-3 mm2/s and (1.377 ± 0.265) μm2/ms, which were all higher than those of the high grade group with the value of 0.964 (0.869, 1.069) × 10-3 mm2/s and (1.114 ± 0.135) μm2/ms, respectively, the difference of each parameter was statistically significant (P < 0.05). There was no statistically significant difference in FA values between the two groups. The areas under the curve (AUC) of ADC, MD and MK values in predicting TB grade were 0.805, 0.816, 0.880, with the sensitivities of 73.7%, 92.1%, 76.3%, and the specificities of 78.7%, 68.0%, 86.7%, respectively. The diagnostic performance of MK value was better than ADC and MD values (P < 0.05). The AUC values of the combined parameters ranged from 0.826 to 0.881, and there was no statistically significant difference in AUC value compared to the MK value.Conclusions The DKI quantitative parameters MK and MD demonstrated significant utility in the non-invasive preoperative prediction of TB status in rectal cancer, thereby assisting clinicians in formulating tailored treatment strategies for patients.
[Keywords] rectal cancer;tumor budding;magnetic resonance imaging;diffusion kurtosis imaging;diffusion-weighted imaging

CHEN Anliang1, 2   XIE Suling3   WANG Yue1   DONG Deshuo1   TIAN Shifeng1, 2   WEI Qiang1   LIU Ailian1, 2*  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian 116011, China

3 Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: LIU A L, E-mail: cjr.liuailian@vip.163.com

Conflicts of interest   None.

Received  2024-09-09
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.009
Cite this article as: CHEN A L, XIE S L, WANG Y, et al. The value of quantitative parameters of diffusion kurtosis imaging in preoperative prediction of tumor budding grade of rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 59-64, 99. DOI:10.12015/issn.1674-8034.2025.02.009.

[1]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[2]
LUGLI A, KIRSCH R, AJIOKA Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016[J]. Mod Pathol, 2017, 30(9): 1299-1311. DOI: 10.1038/modpathol.2017.46.
[3]
National Health Commission of the People's Republic of China. Chinese Protocol of Diagnosis and Treatment of Colorectal Cancer (2020 edition)[J]. Chin J Surg, 2020, 58(8): 561-585. DOI: 10.3760/cma.j.cn112139-20200518-00390.
[4]
DENG S, TAN L, HUANG M Y. Tumor budding and its research progress in colorectal cancer[J]. J Clin Pathol Res, 2019, 39(11): 2519-2524. DOI: 10.3978/j.issn.2095-6959.2019.11.029.
[5]
CHONG G O, PARK S H, JEONG S Y, et al. Prediction model for tumor budding status using the radiomic features of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in cervical cancer[J/OL]. Diagnostics, 2021, 11(8): 1517 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/34441452/. DOI: 10.3390/diagnostics11081517.
[6]
GRANATA V, FUSCO R, SETOLA S V, et al. CT-based radiomics analysis to predict histopathological outcomes following liver resection in colorectal liver metastases[J/OL]. Cancers, 2022, 14(7): 1648 [2024-03-11]. https://pubmed.ncbi.nlm.nih.gov/35406419/. DOI: 10.3390/cancers14071648.
[7]
CHEN F Y, ZHANG S T, MA X L, et al. Prediction of tumor budding in patients with rectal adenocarcinoma using b-value threshold map[J]. Eur Radiol, 2023, 33(2): 1353-1363. DOI: 10.1007/s00330-022-09087-6.
[8]
ZHOU Z, SHEN F, LU H D, et al. The value of dynamic contrast-enhanced magnetic resonance imaging for preoperative evaluation of the tumor budding of rectal cancer[J]. Chin Comput Med Imag, 2022, 28(4): 379-384. DOI: 10.19627/j.cnki.cn31-1700/th.2022.04.002.
[9]
LI Z H, CHEN F Y, ZHANG S T, et al. The feasibility of MRI-based radiomics model in presurgical evaluation of tumor budding in locally advanced rectal cancer[J]. Abdom Radiol, 2022, 47(1): 56-65. DOI: 10.1007/s00261-021-03311-5.
[10]
PENG L, WANG D Q, ZHUANG Z J, et al. Preoperative noninvasive evaluation of tumor budding in rectal cancer using multiparameter MRI radiomics[J]. Acad Radiol, 2024, 31(6): 2334-2345. DOI: 10.1016/j.acra.2023.11.023.
[11]
LIU Z Y, JIA J Y, BAI F, et al. Predicting rectal cancer tumor budding grading based on MRI and CT with multimodal deep transfer learning: A dual-center study[J/OL]. Heliyon, 2024, 10(7): e28769 [2024-09-26]. https://pubmed.ncbi.nlm.nih.gov/38590908/. DOI: 10.1016/j.heliyon.2024.e28769.
[12]
QU X T, ZHANG L, JI W N, et al. Preoperative prediction of tumor budding in rectal cancer using multiple machine learning algorithms based on MRI T2WI radiomics[J/OL]. Front Oncol, 2023, 13: 1267838 [2024-09-26]. https://pubmed.ncbi.nlm.nih.gov/37941552/. DOI: 10.3389/fonc.2023.1267838.
[13]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[14]
HAN Y X, WU P, TIAN J, et al. Diffusion kurtosis imaging and diffusion weighted imaging comparison in diagnosis of early hypoxic-ischemic brain edema[J/OL]. Eur J Med Res, 2023, 28(1): 159 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/37131227/. DOI: 10.1186/s40001-023-01090-x.
[15]
WANG L L, LI S H, HUANG G, et al. Study on biological characteristics of rectal cancer based on magnetic resonance diffusion kurtosis imaging[J]. Chin J Magn Reson Imag, 2020, 11(1): 35-39. DOI: 10.12015/issn.1674-8034.2020.01.008.
[16]
WEN Z Q, CHEN Y, YANG X Y, et al. Application of magnetic resonance diffusion kurtosis imaging for distinguishing histopathologic subtypes and grades of rectal carcinoma[J/OL]. Cancer Imaging, 2019, 19(1): 8 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/30744694/. DOI: 10.1186/s40644-019-0192-x.
[17]
WANG L L, LEI J K, LI S H, et al. Microsatellite instability of rectal cancer based on magnetic resonance diffusion kurtosis imaging[J]. Chin J Magn Reson Imag, 2023, 14(8): 73-78. DOI: 10.12015/issn.1674-8034.2020.01.008.
[18]
ZHOU M, CHEN M Y, LUO M F, et al. Pathological prognostic factors of rectal cancer based on diffusion-weighted imaging, intravoxel incoherent motion, and diffusion kurtosis imaging[J]. Eur Radiol, 2025, 35(2): 979-988. DOI: 10.1007/s00330-024-11025-7.
[19]
DONG W, LIU A L, CHEN A L, et al. Comparison of amide proton transfer-weighted and diffusion kurtosis imaging in quantifying rectal cancer with and without chemotherapy[J]. Chin J Med Imag, 2022, 30(1): 54-59. DOI: 10.3969/j.issn.1005-5185.2022.01.012.
[20]
HUANG W K, FENG J P, YAN Z X, et al. Predicting treatment response of locally advanced rectal adenocarcinoma after neoadjuvant chemoradiotherapy using diffusion kurtosis imaging and diffusion weighted imaging[J]. Radiol Pract, 2022, 37(4): 485-492. DOI: 10.13609/j.cnki.1000-0313.2022.04.013.
[21]
ZHANG L, JIN Z W, YANG F, et al. Added value of histogram analysis of intravoxel incoherent motion and diffusion kurtosis imaging for the evaluation of complete response to neoadjuvant therapy in locally advanced rectal cancer[J]. Eur Radiol, 2025, 35(3): 1669-1678. DOI: 10.1007/s00330-024-11081-z.
[22]
LUGLI A, ZLOBEC I, BERGER M D, et al. Tumour budding in solid cancers[J]. Nat Rev Clin Oncol, 2021, 18(2): 101-115. DOI: 10.1038/s41571-020-0422-y.
[23]
WANG P, JIE Y, YAO L, et al. Clinical significance of tumor budding in heterochronous distant metastases in colorectal cancer[J]. Chin J Exp Surg, 2023, 40(5): 985. DOI: 10.3760/cma.j.cn421213-20230108-00011.
[24]
DE SMEDT L, PALMANS S, ANDEL D, et al. Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching[J]. Br J Cancer, 2017, 116(1): 58-65. DOI: 10.1038/bjc.2016.382.
[25]
CAO W G, YANG Z L.Research progress of tumor microenvironment and epithelial-mesenchymal transition in tumor metastasis[J]. J Basic Clin Oncol, 2019, 32(6): 547-549. DOI: 10.3969/j.issn.1673-5412.2019.06.026.
[26]
ELKADY N, ALLAM D M.The role of Galectin3, tubulinβ, and maspin in promoting tumor budding in colorectal carcinoma and their clinical implications[J]. Appl Immunohistochem Mol Morphol, 2024, 32(3): 143-150. DOI: 10.1097/PAI.0000000000001183.
[27]
MA J, LI H T, GAO Q Q, et al. High MEIS3 expression indicates a poor prognosis for patients with stage II/III colorectal cancer[J/OL]. Front Biosci, 2023, 28(12): 338 [2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/38179750/. DOI: 10.31083/j.fbl2812338.
[28]
KAJIWARA Y, OKA S, TANAKA S, et al. Nomogram as a novel predictive tool for lymph node metastasis in T1 colorectal cancer treated with endoscopic resection: a nationwide, multicenter study[J]. Gastrointest Endosc, 2023, 97(6): 1119-1128. DOI: 10.1016/j.gie.2023.01.022.
[29]
OKA S, TANAKA S, KAJIWARA Y, et al. Treatment decision for locally resected T1 colorectal carcinoma-verification of the Japanese guideline criteria for additional surgery based on long-term clinical outcomes[J]. Am J Gastroenterol, 2024, 119(10): 2019-2027. DOI: 10.14309/ajg.0000000000002715.
[30]
BETGE J, KORNPRAT P, POLLHEIMER M J, et al. Tumor budding is an independent predictor of outcome in AJCC/UICC stage II colorectal cancer[J]. Ann Surg Oncol, 2012, 19(12): 3706-3712. DOI: 10.1245/s10434-012-2426-z.
[31]
ZENG D T, HUANG W J, LI L Y, et al. New progress in clinical and pathological significance of tumor budding in digestive system malignant tumors[J]. Chin J Clin Exp Pathol, 2024, 40(6): 632-636. DOI: 10.13315/j.cnki.cjcep.2024.06.014.
[32]
RAN X, CHEN Y, LIU C X, et al. Differential effect of tumor budding on the benefit of adjuvant chemotherapy in stage II colorectal cancer: a retrospective observational study[J]. J Gastrointest Oncol, 2024, 15(4): 1545-1555. DOI: 10.21037/jgo-24-278.
[33]
WANG X Z, XIAO M M, LIU Q F.Correlation between tumor budding, TILs and clinicopathological features and prognosis of colorectal cancer patients[J]. J Mod Oncol, 2022, 30(21): 3935-3939. DOI: 10.3969/j.issn.1672-4992.2022.21.019.
[34]
LI J H, MA Y L, WEN L, et al. Prognostic impact of tumor budding in rectal cancer after neoadjuvant therapy: a systematic review and meta-analysis[J/OL]. Syst Rev, 2024, 13(1): 22 [2024-03-10]. https://pubmed.ncbi.nlm.nih.gov/38191437/. DOI: 10.1186/s13643-023-02441-9.
[35]
JIN X X, YAN R F, LI Z, et al. Evaluation of amide proton transfer-weighted imaging for risk factors in stage I endometrial cancer: a comparison with diffusion-weighted imaging and diffusion kurtosis imaging[J/OL]. Front Oncol, 2022, 12: 876120 [2024-09-26]. https://pubmed.ncbi.nlm.nih.gov/35494050/. DOI: 10.3389/fonc.2022.876120.

PREV Development and validation of a model for predicting pathological grade of intrahepatic mass-forming cholangiocarcinoma based on intratumoral and peritumoral features on MRI
NEXT Application value of pCASL technique in assessing renal function impairment and staging in chronic kidney disease patients with hypertension
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn