Share:
Share this content in WeChat
X
Clinical Article
Study on the diagnostic value of combined models based on PSAD and mp-MRI in clinically significant prostate cancer
XIN Jianying  ZHANG Wenxuan  HAN Yu  GONG Ping  XU Aixia  WANG Xizhen 

Cite this article as: XIN J Y, ZHANG W X, HAN Y, et al. Study on the diagnostic value of combined models based on PSAD and mp-MRI in clinically significant prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 72-76, 141. DOI:10.12015/issn.1674-8034.2025.02.011.


[Abstract] Objective To evaluate the value of prostate specific antigen density (PSAD) combined with multi-parameter magnetic resonance imaging (mp-MRI) used in diagnosing clinically significant prostate cancer (csPCa).Materials and Methods Retrospective analysis of clinical and imaging data of 105 patients with suspected PCa and pathological findings were selected, prostate specific antigen (PSA) detection and mp-MRI were performed before surgery. Based on pathological results and Gleason score, patients were divided into csPCa and non-csPCa groups. Parameters of mp-MRI including apparent diffusion coefficient (ADC), Begin time of enhancement (T0), Brevity of enhancement, wash in rate (WIR) and PSAD were compared between the two groups, combined diagnostic models were constructed by binary logistic regression, and receiver operating characteristic (ROC) curves were used to evaluate the diagnostic efficacy of each parameter and model for csPCa.Results The ADC and T0 in csPCa group were lower than those in non-csPCa group, while the PSAD, WIR and Brevity of enhancement were opposite, and all differences reach statistical significance (P < 0.05). The area under the curve (AUC) for the diagnosis of csPCa in PSAD, ADC and WIR were 0.902 (0.829 to 0.952), 0.890 (0.814 to 0.942) and 0.812 (0.724 to 0.882) respectively with higher diagnostic efficacy, the clinical diagnostic boundaries were 0.47 ng/(mL·cm3), 0.82 × 10-3 mm2/s, 50.33 s-1, the sensitivities were 79.1%, 67.4%, 100.0%, and the specificities were 100.0%, 100.0% and 54.8%, respectively. The AUC, sensitivity and specificity of any two and multi-parameter combined diagnosis of csPCa by WIR, PSAD and ADC: WIR + PSAD 0.929 (0.862 to 0.970), 83.7%, 96.8%; ADC + PSAD 0.940 (0.877 to 0.977), 90.7%, 91.9%; WIR + ADC 0.935 (0.870 to 0.974), 79.1%, 95.2%; WIR + PSAD + ADC 0.955 (0.896 to 0.986), 90.7%, 91.9%, respectively. ROC curve contrast analysis revealed significant differences in AUC between WIR + PSAD + ADC, ADC + PSAD, WIR + ADC combined diagnostic models and ADC, WIR single parameter diagnosis of csPCa (P < 0.05); the AUC of WIR+PSAD model was different from that of WIR in the diagnosis of csPCa statistically (P < 0.05).Conclusions PSAD combined with mp-MRI has a high diagnostic value for csPCa, progressively, the combined diagnostic model based on the key indicators can be used to predict csPCa.
[Keywords] clinically significant prostate cancer;prostate specific antigen density;multi-parameter magnetic resonance imaging;diffusion weighted imaging;dynamic contrast-enhanced;diagnostic efficacy

XIN Jianying   ZHANG Wenxuan   HAN Yu   GONG Ping   XU Aixia   WANG Xizhen*  

Medical Imaging Center, Affiliated Hospital of Shandong Second Medical University, Weifang 261031, China

Corresponding author: WANG X Z, E-mail: zhen94320@aliyun.com

Conflicts of interest   None.

Received  2024-08-13
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.011
Cite this article as: XIN J Y, ZHANG W X, HAN Y, et al. Study on the diagnostic value of combined models based on PSAD and mp-MRI in clinically significant prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 72-76, 141. DOI:10.12015/issn.1674-8034.2025.02.011.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
ZHANG Z, XU H Z, XUE Y N, et al. Risk stratification of prostate cancer using the combination of histogram analysis of apparent diffusion coefficient across tumor diffusion volume and clinical information: A pilot study[J]. J Magn Reson Imaging, 2019, 49(2): 556-564. DOI: 10.1002/jmri.26235.
[3]
LIU X, YU C, BI Y, et al. Trends and age-period-cohort effect on incidence and mortality of prostate cancer from 1990 to 2017 in China[J]. Public Health, 2019, 172: 70-80. DOI: 10.1016/j.puhe.2019.04.016.
[4]
TEOH J Y C, HIRAI H W, HO J M W, et al. Global incidence of prostate cancer in developing and developed countries with changing age structures[J/OL]. PLoS One, 2019, 14(10): e0221775 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/31647819/. DOI: 10.1371/journal.pone.0221775.
[5]
HE J, CHEN W Q, LI N, et al. China guideline for the screening and early detection of prostate cancer (2022, Beijing)[J]. China Cancer, 2022, 31(1): 1-30. DOI: 10.11735/j.issn.1004-0242.2022.01.A001.
[6]
SABA K, WETTSTEIN M S, LIEGER L, et al. External validation and comparison of prostate cancer risk calculators incorporating multiparametric magnetic resonance imaging for prediction of clinically significant prostate cancer[J]. J Urol, 2020, 203(4): 719-726. DOI: 10.1097/JU.0000000000000622.
[7]
MOHLER J L, ANTONARAKIS E S, ARMSTRONG A J, et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2019, 17(5): 479-505. DOI: 10.6004/jnccn.2019.0023.
[8]
Prostate Cancer Group of the Urology and Andrology Tumor Professional Committee of the Chinese Anti Cancer Association. China expert consensus on prostate cancer screening (2021 edition)[J]. China Oncol, 2021, 31(5): 435-440. DOI: 10.19401/j.cnki.1007-3639.2021.05.010.
[9]
ANDRIOLE G L, DAVID CRAWFORD E, GRUBB R L, et al. Mortality results from a randomized prostate-cancer screening trial[J]. N Engl J Med, 2009, 360(13): 1310-1319. DOI: 10.1056/NEJMoa0810696.
[10]
LOWRANCE W T, BREAU R H, CHOU R, et al. Advanced prostate cancer: AUA/ASTRO/SUO guideline PART Ⅱ[J]. J Urol, 2021, 205(1): 22-29. DOI: 10.1097/JU.0000000000001376.
[11]
STEVENS E, TRUONG M, BULLEN J A, et al. Clinical utility of PSAD combined with PI-RADS category for the detection of clinically significant prostate cancer[J/OL]. Urol Oncol, 2020, 38(11): 846.e9-846.e16 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/32576527/. DOI: 10.1016/j.urolonc.2020.05.024.
[12]
SCHOOTS I G, ROOBOL M J. Multivariate risk prediction tools including MRI for individualized biopsy decision in prostate cancer diagnosis: current status and future directions[J]. World J Urol, 2020, 38(3): 517-529. DOI: 10.1007/s00345-019-02707-9.
[13]
MOTTET N, VAN DEN BERGH R C N, BRIERS E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-262. DOI: 10.1016/j.eururo.2020.09.042.
[14]
CARACCIOLO M, CASTELLO A, LOPCI E. PSMA PET/CT versus mpMRI for the detection of clinically significant prostate cancer: an updated overview[J]. Semin Nucl Med, 2024, 54(1): 30-38. DOI: 10.1053/j.semnuclmed.2023.10.002.
[15]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[16]
WEI C G, PAN P, CHEN T, et al. A nomogram based on PI-RADS v2.1 and clinical indicators for predicting clinically significant prostate cancer in the transition zone[J]. Transl Androl Urol, 2021, 10(6): 2435-2446. DOI: 10.21037/tau-21-49.
[17]
WANG Y H, LIANG C, ZHU F P, et al. Improving the understanding of PI-RADS in practice: characters of PI-RADS 4 and 5 lesions with negative biopsy[J]. Asian J Androl, 2023, 25(2): 217-222. DOI: 10.4103/aja2022112.
[18]
LEE G H, CHATTERJEE A, KARADEMIR I, et al. Comparing radiologist performance in diagnosing clinically significant prostate cancer with multiparametric versus hybrid multidimensional MRI[J]. Radiology, 2022, 305(2): 399-407. DOI: 10.1148/radiol.211895.
[19]
KOZEL Z, MARTIN C, MIKHAIL D, et al. Initial experience and cancer detection rates of office-based transperineal magnetic resonance imaging-ultrasound fusion prostate biopsy under local anesthesia[J/OL]. Can Urol Assoc J, 2022, 16(7): E350-E356 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/35230932/. DOI: 10.5489/cuaj.7472.
[20]
MARGEL D, BERNSTINE H, GROSHAR D, et al. Diagnostic performance of 68Ga prostate-specific membrane antigen PET/MRI compared with multiparametric MRI for detecting clinically significant prostate cancer[J]. Radiology, 2021, 301(2): 379-386. DOI: 10.1148/radiol.2021204093.
[21]
PADHANI A R, WEINREB J, ROSENKRANTZ A B, et al. Prostate imaging-reporting and data system steering committee: PI-RADS v2 status update and future directions[J]. Eur Urol, 2019, 75(3): 385-396. DOI: 10.1016/j.eururo.2018.05.035.
[22]
LEE C H, VELLAYAPPAN B, TAN C H. Comparison of diagnostic performance and inter-reader agreement between PI-RADS v2.1 and PI-RADS v2: systematic review and meta-analysis[J/OL]. 2022, 95(1131): 20210509 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/34520694/. DOI: 10.1259/bjr.20210509.
[23]
OERTHER B, ENGEL H, NEDELCU A, et al. Prediction of upgrade to clinically significant prostate cancer in patients under active surveillance: Performance of a fully automated AI-algorithm for lesion detection and classification[J]. Prostate, 2023, 83(9): 871-878. DOI: 10.1002/pros.24528.
[24]
MATOSO A, EPSTEIN J I.Defining clinically significant prostate cancer on the basis of pathological findings[J]. Histopathology, 2019, 74(1): 135-145. DOI: 10.1111/his.13712.
[25]
LIU T B, ZHANG X M, CHEN R, et al. Development, comparison, and validation of four intelligent, practical machine learning models for patients with prostate-specific antigen in the gray zone[J/OL]. Front Oncol, 2023, 13: 1157384 [2024-08-12]. https://pubmed.ncbi.nlm.nih.gov/37361597/. DOI: 10.3389/fonc.2023.1157384.
[26]
CHEN Y C, XU D, RUAN M J, et al. A prospective study of the prostate health index density and multiparametric magnetic resonance imaging in diagnosing clinically significant prostate cancer[J]. Investig Clin Urol, 2023, 64(4): 363-372. DOI: 10.4111/icu.20230060.
[27]
GAUDIANO C, BIANCHI L, CORCIONI B, et al. Evaluating the performance of clinical and radiological data in predicting prostate cancer in prostate imaging reporting and data system version 2.1 category 3 lesions of the peripheral and the transition zones[J]. Int Urol Nephrol, 2022, 54(2): 263-271. DOI: 10.1007/s11255-021-03071-7.
[28]
CUOCOLO R, STANZIONE A, RUSCONI G, et al. PSA-density does not improve bi-parametric prostate MR detection of prostate cancer in a biopsy naïve patient population[J]. Eur J Radiol, 2018, 104: 64-70. DOI: 10.1016/j.ejrad.2018.05.004.
[29]
HAN L Y, HE G Y, MEI Y J, et al. Combining magnetic resonance diffusion-weighted imaging with prostate-specific antigen to differentiate between malignant and benign prostate lesions[J]. Med Sci Monit, 2022, 28: e935307. DOI: 10.12659/MSM.935307.
[30]
ZHONG Y, TIAN F, ZHOU S, et al. Prediction model and internal validation of PI-RADS v2.1 combined with PSA-related parameters in the diagnosis of clinically significant prostate cancer[J]. J China Med Univ, 2022, 51(12): 1090-1094, 1101. DOI: 10.12007/j.issn.0258-4646.2022.12.007.
[31]
HUANG D D, FENG Q R, LI Z H, et al. Diagnosis value of BP-MRI combined clinical predictors for prostate cancer[J]. Chin J Magn Reson Imag, 2023, 14(10): 90-97. DOI: 10.12015/issn.1674-8034.2023.10.016.
[32]
ZHANG D, ZHANG S R, SONG N, et al. The value of PI-RADS v2.1 combined with psad stratification in predicting peripheral zone clinically significant prostate cancer in patients with psa 4-20 ng/mL[J]. Chin Comput Med Imag, 2023, 29(6): 631-636. DOI: 10.19627/j.cnki.cn31-1700/th.2023.06.003.
[33]
HAN C, LIU S, QIN X B, et al. MRI combined with PSA density in detecting clinically significant prostate cancer in patients with PSA serum levels of 4∼10ng/mL: Biparametric versus multiparametric MRI[J]. Diagn Interv Imaging, 2020, 101(4): 235-244. DOI: 10.1016/j.diii.2020.01.014.
[34]
CHEN M L, ZHANG J, ZHANG Y D, et al. Diagnosis of clinically significant prostate cancer by mp-MRI based radiomic features[J]. Chin Comput Med Imag, 2020, 26(3): 261-265. DOI: 10.19627/j.cnki.cn31-1700/th.2020.03.013.
[35]
WESTPHALEN A C, FAZEL F, NGUYEN H, et al. Detection of clinically signifi cant prostate cancer with PIRADS v2 scores, PSA density, and ADC values in regions with and without mpMRI visible lesions[J]. Int Braz J Urol, 2019, 45(4): 713-723. DOI: 10.1590/S1677-5538.IBJU.2018.0768.
[36]
MENG F Q, HUANG H, QI X H, et al. Application value of ADC value and eADC value in bi-parametric MRI in detecting clinical significant prostate cancer[J]. Oncoradiology, 2023, 32(4): 353-359. DOI: 10.19732/j.cnki.2096-6210.2023.04.007.
[37]
YUE X H, KONG W D, REN J L, et al. Value of 3.0-T MR diffusion-weighted imaging combined with dynamic contrast-enhanced imaging in differentiating benign and malignant thyroid nodules[J]. JOURNAL OF SHANGHAI JIAO TONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1393-1397. DOI: 10.3969/j.issn.1674-8115.2020.10.016.

PREV Application value of pCASL technique in assessing renal function impairment and staging in chronic kidney disease patients with hypertension
NEXT Study the value of reduced field-of-view diffusion kurtosis imaging in histological evaluation of endometrial adenocarcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn