Share:
Share this content in WeChat
X
Clinical Article
Study the value of reduced field-of-view diffusion kurtosis imaging in histological evaluation of endometrial adenocarcinoma
ZHU Liuhong  LU Weihong  WANG Yanwei  WU Puye  WANG Funan  LIU Hao  ZHOU Jianjun 

Cite this article as: ZHU L H, LU W H, WANG Y W, et al. Study the value of reduced field-of-view diffusion kurtosis imaging in histological evaluation of endometrial adenocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(2): 77-82. DOI:10.12015/issn.1674-8034.2025.02.012.


[Abstract] Objective To explore the potential performance of reduced field-of-view diffusion kurtosis imaging (rFOV-DKI) in the differentiating the different histological grades of endometrial adenocarcinoma.Materials and Methods A total of 48 patients with pathologically confirmed endometrial adenocarcinoma were enrolled in our study after getting institutional review board approval. According to the two-rank classification method of the International Federation of Gynecology and Obstetrics (FIGO), the participants were divided to low-grade group (G1, G1-2 and G2, n = 30) and high-grade group (G3, n = 18). All participants underwent contrast enhancement MR examinations including routine sequences and additional rFOV-DKI sequence on a 3.0 T MRI scanner. The data was postprocessed by the functional tool on the workstation (AW4.6, GE Healthcare). With the reference of sagittal T2WI images, the lesion ROI (region of interest) was outlined. Derived parameters of DKI, including mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr), mean kurtosis (MK), axial kurtosis (Ka), and radial kurtosis (Kr) were all calculated. The DKI parameters of low-grade group and high-grade group were compared. The receiver operating characteristic (ROC) curve was used to evaluate each parameter's diagnostic performance.Results Mean values of MD, Da and Dr of low-grade group [(0.93 ± 0.08) µm2/ms, (1.14 ± 0.10) µm2/ms, (0.83 ± 0.08) µm2/ms] were significantly higher than those of high-grade group [(0.80 ± 0.08) µm2/ms, (1.05 ± 0.07) µm2/ms, (0.74 ± 0.06) µm2/ms; all P < 0.05]. While mean values of MK, Ka and Kr of low-grade group (1.15 ± 0.10, 1.36 ± 0.10, 0.97 ± 0.13) were significantly lower than those of high-grade group (1.33 ± 0.11, 1.64 ± 0.11, 1.08 ± 0.09). The Ka values had the highest diagnostic accuracy in differentiating low-grade group from high-grade group, AUC = 0.98 (95% CI: 0.89 to 1.00), followed by MK [AUC = 0.90 (95% CI: 0.78 to 0.97)] and MD [AUC is 0.88 (95% CI: 0.76 to 0.96)]. There were no significant differences between AUCs of MK and Ka (Z = 1.81, P = 0.07), and AUCs of MK and MD (Z = 0.53, P = 0.59), while significant differences were found between that of Ka and MD (Z = 2.40, P = 0.02). Ka performed best (sensitivity: 100%, specificality: 90%) in the differentiation between low-grade group from high-grade group among all DKI derived parameters.Conclusions Kurtosis indices from rFOV-DKI based on the non-Gaussian diffusion-weighted model can be acted as a potential tool in the grade differentiation of endometrial adenocarcinoma, and can be a useful compensation to the conventional MRI.
[Keywords] endometrial adenocarcinoma;magnetic resonance imaging;reduced field-of-view diffusion kurtosis imaging;histological grade;mean kurtosis;axial kurtosis

ZHU Liuhong1   LU Weihong2   WANG Yanwei3   WU Puye4   WANG Funan1   LIU Hao1, 5*   ZHOU Jianjun1, 5  

1 Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China

2 Department of Gynaecology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China

3 Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361012, China

4 Department of Magnetic Resonance Research, GE Healthcare, Beijing 100176, China

5 Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China

Corresponding author: LIU H, E-mail: liuhaozsxm@163.com

Conflicts of interest   None.

Received  2024-07-29
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.02.012
Cite this article as: ZHU L H, LU W H, WANG Y W, et al. Study the value of reduced field-of-view diffusion kurtosis imaging in histological evaluation of endometrial adenocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(2): 77-82. DOI:10.12015/issn.1674-8034.2025.02.012.

[1]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[2]
AHMEDIN JEMAL DVM P. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[3]
CROSBIE E J, KITSON S J, MCALPINE J N, et al. Endometrial cancer[J]. Lancet, 2022, 399(10333): 1412-1428. DOI: 10.1016/s0140-6736(22)00323-3.
[4]
HAMILTON C A, POTHURI B, AREND R C, et al. Endometrial cancer: a society of gynecologic oncology evidence-based review and recommendations, part Ⅱ[J]. Gynecol Oncol, 2021, 160(3): 827-834. DOI: 10.1016/j.ygyno.2020.12.024.
[5]
BEREK J S, MATIAS-GUIU X, CREUTZBERG C, et al. FIGO staging of endometrial cancer: 2023[J]. Int J Gynaecol Obstet, 2023, 162(2): 383-394. DOI: 10.1002/ijgo.14923.
[6]
ZHANG C X, ZHENG W X. High-grade endometrial carcinomas: morphologic spectrum and molecular classification[J]. Semin Diagn Pathol, 2022, 39(3): 176-186. DOI: 10.1053/j.semdp.2021.11.002.
[7]
LUCAS E, CARRICK K S. Low grade endometrial endometrioid adenocarcinoma: a review and update with emphasis on morphologic variants, mimics, immunohistochemical and molecular features[J]. Semin Diagn Pathol, 2022, 39(3): 159-175. DOI: 10.1053/j.semdp.2022.02.002.
[8]
SBARRA M, LUPINELLI M, BROOK O R, et al. Imaging of endometrial cancer[J]. Radiol Clin N Am, 2023, 61(4): 609-625. DOI: 10.1016/j.rcl.2023.02.007.
[9]
ARIAN A, AHMADI E, GITY M, et al. Diagnostic value of T2 and diffusion-weighted imaging (DWI) in local staging of endometrial cancer[J]. J Med Imaging Radiat Sci, 2023, 54(2): 265-272. DOI: 10.1016/j.jmir.2023.01.002.
[10]
WANG Y A, HE M G, CAO P, et al. Tissue characteristics of endometrial carcinoma analyzed by quantitative synthetic MRI and diffusion-weighted imaging[J/OL]. Diagnostics, 2022, 12(12): 2956 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/36552962/. DOI: 10.3390/diagnostics12122956.
[11]
FUJII S, GONDA T, YUNAGA H. Clinical utility of diffusion-weighted imaging in gynecological imaging: revisited[J]. Invest Radiol, 2024, 59(1): 78-91. DOI: 10.1097/RLI.0000000000001004.
[12]
KANG H S, KIM J Y, KIM J J, et al. Diffusion kurtosis MR imaging of invasive breast cancer: correlations with prognostic factors and molecular subtypes[J]. J Magn Reson Imaging, 2022, 56(1): 110-120. DOI: 10.1002/jmri.27999.
[13]
PODGÓRSKA J, PASICZ K, SKRZYŃSKI W, et al. Application of diffusion kurtosis imaging in differential diagnosis of focal liver lesions[J/OL]. Pol J Radiol, 2023, 88: e455-e460 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/38020499/. DOI: 10.5114/pjr.2023.131911.
[14]
PALUMBO P, MARTINESE A, ANTENUCCI M R, et al. Diffusion kurtosis imaging and standard diffusion imaging in the magnetic resonance imaging assessment of prostate cancer[J]. Gland Surg, 2023, 12(12): 1806-1822. DOI: 10.21037/gs-23-53.
[15]
GRANATA V, FUSCO R, BELLI A, et al. Diffusion weighted imaging and diffusion kurtosis imaging in abdominal oncological setting: why and when[J/OL]. Infect Agent Cancer, 2022, 17(1): 25 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/35681237/. DOI: 10.1186/s13027-022-00441-3.
[16]
HE M, XU J, SUN Z Y, et al. Prospective comparison of reduced field-of-view (rFOV) and full FOV (fFOV) diffusion-weighted imaging (DWI) in the assessment of insulinoma: image quality and lesion detection[J]. Acad Radiol, 2020, 27(11): 1572-1579. DOI: 10.1016/j.acra.2019.11.019.
[17]
MS J S, BS J L, PHD X Z, et al. Comparison of reduced and full field of view in diffusion-weighted MRI on image quality: a meta-analysis[J]. J Magn Reson Imag, 2025, 61(2): 690-701. DOI: 10.1002/jmri.29487.
[18]
BARON P, WIELEMA M, DIJKSTRA H, et al. Comparison of conventional and higher-resolution reduced-FOV diffusion-weighted imaging of breast tissue[J]. MAGMA, 2023, 36(4): 613-619. DOI: 10.1007/s10334-022-01055-x.
[19]
YIN X, WU H, GAO Y, et al. Application of different diffusion models in the diagnosis of endometrial cancer[J]. Chin J Magn Reson Imag, 2018, 9(7): 556-560. DOI: 10.12015/issn.1674-8034.2018.07.013.
[20]
OTA T, TSUBOYAMA T, ONISHI H, et al. Diagnostic accuracy of MRI for evaluating myometrial invasion in endometrial cancer: a comparison of MUSE-DWI, rFOV-DWI, and DCE-MRI[J]. Radiol Med, 2023, 128(6): 629-643. DOI: 10.1007/s11547-023-01635-4.
[21]
HE Y K, WANG M, YI S Q, et al. Diffusion-weighted imaging in the assessment of cervical cancer: comparison of reduced field-of-view diffusion-weighted imaging and conventional techniques[J]. Acta Radiol, 2023, 64(8): 2485-2491. DOI: 10.1177/02841851231183870.
[22]
HARDER F N, KAMAL O, KAISSIS G A, et al. Qualitative and quantitative comparison of respiratory triggered reduced field-of-view (FOV) versus full FOV diffusion weighted imaging (DWI) in pancreatic pathologies[J]. Acad Radiol, 2021, 28(Suppl 1): S234-S243. DOI: 10.1016/j.acra.2020.12.011.
[23]
YUE W, MENG N, WANG J, et al. Comparative analysis of the value of diffusion kurtosis imaging and diffusion-weighted imaging in evaluating the histological features of endometrial cancer[J/OL]. Cancer Imaging, 2019, 19(1): 9 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/30764876/. DOI: 10.1186/s40644-019-0196-6.
[24]
TIAN S F, CHEN A L, LI Y, et al. The combined application of amide proton transfer imaging and diffusion kurtosis imaging for differentiating stage Ia endometrial carcinoma and endometrial polyps[J]. Magn Reson Imaging, 2023, 99: 67-72. DOI: 10.1016/j.mri.2022.12.026.
[25]
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[26]
ZHANG J H, LANG N, YUAN H S. Research advances in diffusional kurtosis imaging[J]. Chin J Magn Reson Imag, 2018, 9(4): 316-320. DOI: 10.12015/issn.1674-8034.2018.04.016.
[27]
ZOU J Z, YE J, ZHU W R, et al. Diffusion-weighted and diffusion kurtosis imaging analysis of microstructural differences in clear cell renal cell carcinoma: a comparative study[J/OL]. Br J Radiol, 2023, 96(1150): 20230146 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/37393526/. DOI: 10.1259/bjr.20230146.
[28]
POGOSBEKIAN E L, PRONIN I N, ZAKHAROVA N E, et al. Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading[J]. Neuroradiology, 2021, 63(8): 1241-1251. DOI: 10.1007/s00234-020-02613-7.
[29]
DUAN Z Q, FANG S B, HU J W, et al. Correlation of intravoxel incoherent motion and diffusion kurtosis MR imaging models with reactive stromal grade in prostate cancer[J]. J Magn Reson Imaging, 2023, 58(2): 630-639. DOI: 10.1002/jmri.28546.
[30]
XIE S H, LANG R, LI B, et al. Evaluation of diffuse glioma grade and proliferation activity by different diffusion-weighted-imaging models including diffusion kurtosis imaging (DKI) and mean apparent propagator (MAP) MRI[J]. Neuroradiology, 2023, 65(1): 55-64. DOI: 10.1007/s00234-022-03000-0.
[31]
LI J, GAO X M, CHENG J L. Relationship of diffusion kurtosis imaging parameters with the pathologic type and prognosis of rectal tumors[J]. Chin J Oncol, 2022, 44(11): 1208-1213. DOI: 10.3760/cma.j.cn112152-20201019-00913.
[32]
HONDA M, LE BIHAN D, KATAOKA M, et al. Diffusion kurtosis imaging as a biomarker of breast cancer[J/OL]. BJR Open, 2023, 5(1): 20220038 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/37035767/. DOI: 10.1259/bjro.20220038.

PREV Study on the diagnostic value of combined models based on PSAD and mp-MRI in clinically significant prostate cancer
NEXT A comparative study of MRI-based methods for quantitative assessment of skeletal muscle fat content
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn