Share:
Share this content in WeChat
X
Clinical Article
A comparative study of MRI-based methods for quantitative assessment of skeletal muscle fat content
GUO Yitong  HUANG Yilong  YAN Jun  CHEN Jiaxin  LI Chunli  LU Jiahang  HE Bo 

Cite this article as: GUO Y T, HUANG Y L, YAN J, et al. A comparative study of MRI-based methods for quantitative assessment of skeletal muscle fat content[J]. Chin J Magn Reson Imaging, 2025, 16(2): 83-87, 148. DOI:10.12015/issn.1674-8034.2025.02.013.


[Abstract] Objective The proton density fat fraction (PDFF) was used as a reference to analyze and compare the difference and consistency between PDFF and visual scoring method, in phase and out of phase method, and threshold segmentation method in quantifying fat infiltration of lumbar paraspinal muscles.Materials and methods A total of 227 patients who underwent lumbar MRI examination from January 2023 to December 2023 were collected, and the scanning sequences included T2WI, iterative Dixon water-fat separation with echo asymmetry and least-squares estimation, and iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation. Fat content of the paraspinal muscles was quantitatively assessed using Goutallier classification (GC), fat fraction (FF), the percentage of fat infiltration area (%FIA) and PDFF, respectively. Intra-class correlation coefficient (ICC), Mann-Whitney U test, Bland-Altman bias and Spearman correlation were used to evaluate the agreement, difference, bias and correlation between PDFF and GC, FF and %FIA.Results Among the four imaging methods, GC had the worst consistency (ICC = 0.623, P < 0.001), and %FIA had the best consistency (ICC = 0.965, P < 0.001). The measurement results of FF, %FIA and PDFF are different (all P < 0.05) and biased. There was a weak correlation between GC and PDFF (r = 0.252 to 0.367, all P < 0.001). There was no correlation between FF and PDFF in multifidus muscle (all P > 0.05). %FIA was moderately correlated with PDFF (r = 0.546 to 0.652, all P < 0.001).Conclusions The reliability of GC is general, and the accuracy of FF is low. %FIA is highly correlated with PDFF and stable. The threshold segmentation method can be used as an alternative method for PDFF.
[Keywords] magnetic resonance imaging;skeletal muscle;fat quantification;comparative study

GUO Yitong1   HUANG Yilong1   YAN Jun2   CHEN Jiaxin1   LI Chunli1   LU Jiahang3   HE Bo1*  

1 Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China

2 Department of Radiology, the First People′s Hospital of Qujing City, Qujing 655099, China

3 Department of Medical Imaging, Southern Central Hospital of Yunnan Province (The First People's Hospital of Honghe State), Mengzi 661199, China

Corresponding author: HE B, E-mail: kmmu_hb@163.com44

Conflicts of interest   None.

Received  2024-08-23
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.013
Cite this article as: GUO Y T, HUANG Y L, YAN J, et al. A comparative study of MRI-based methods for quantitative assessment of skeletal muscle fat content[J]. Chin J Magn Reson Imaging, 2025, 16(2): 83-87, 148. DOI:10.12015/issn.1674-8034.2025.02.013.

[1]
CORREA-DE-ARAUJO R, ADDISON O, MILJKOVIC I, et al. Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the national institute on aging[J/OL]. Front Physiol, 2020, 11: 963 [2024-01-18]. https://pubmed.ncbi.nlm.nih.gov/32903666/. DOI: 10.3389/fphys.2020.00963.
[2]
MILJKOVIC I, VELLA C A, ALLISON M. Computed tomography-derived myosteatosis and metabolic disorders[J]. Diabetes Metab J, 2021, 45(4): 482-491. DOI: 10.4093/dmj.2020.0277.
[3]
HODGES P W, DANNEELS L. Changes in structure and function of the back muscles in low back pain: different time points, observations, and mechanisms[J]. J Orthop Sports Phys Ther, 2019, 49(6): 464-476. DOI: 10.2519/jospt.2019.8827.
[4]
KRKOSKA P, KOKOSOVA V, DOSTAL M, et al. Assessment of lumbar paraspinal muscle morphology using mDixon Quant magnetic resonance imaging (MRI): a cross-sectional study in healthy subjects[J]. Quant Imaging Med Surg, 2024, 14(8): 6015-6035. DOI: 10.21037/qims-23-1796.
[5]
HAN G Y, WU H T, DAI J Y, et al. Does paraspinal muscle morphometry predict functional status and re-operation after lumbar spinal surgery? A systematic review and meta-analysis[J]. Eur Radiol, 2023, 33(8): 5269-5281. DOI: 10.1007/s00330-023-09548-6.
[6]
KANG J, ZHA Y F, LI L, et al. MR texture analysis of paravertebral fat infiltration in patients with chronic low back pain based on IDEAL-IQ sequence[J]. Chin J Magn Reson Imag, 2021, 12(10): 6-11. DOI: 10.12015/issn.1674-8034.2021.10.002.
[7]
FISCHER M A, PFIRRMANN C W A, ESPINOSA N, et al. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality[J]. Eur Radiol, 2014, 24(6): 1366-1375. DOI: 10.1007/s00330-014-3121-1.
[8]
STAREKOVA J, HERNANDO D, PICKHARDT P J, et al. Quantification of liver fat content with CT and MRI: state of the art[J]. Radiology, 2021, 301(2): 250-262. DOI: 10.1148/radiol.2021204288.
[9]
HAUEISE T, SCHICK F, STEFAN N, et al. Comparison of the accuracy of commercial two-point and multi-echo Dixon MRI for quantification of fat in liver, paravertebral muscles, and vertebral bone marrow[J/OL]. Eur J Radiol, 2024, 172: 111359 [2024-02-15]. https://pubmed.ncbi.nlm.nih.gov/38325186/. DOI: 10.1016/j.ejrad.2024.111359.
[10]
WANG M, CHEN H Y, MA Y, et al. Dual-layer spectral-detector CT for detecting liver steatosis by using proton density fat fraction as reference[J/OL]. Insights Imaging, 2024, 15(1): 210 [2024-02-17]. https://pubmed.ncbi.nlm.nih.gov/39145877/. DOI: 10.1186/s13244-024-01716-6.
[11]
JANG W, SONG J S. Non-invasive imaging methods to evaluate non-alcoholic fatty liver disease with fat quantification: a review[J/OL]. Diagnostics, 2023, 13(11): 1852 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/37296703/. DOI: 10.3390/diagnostics13111852.
[12]
DI MATTEO A, MOSCIONI E, LOMMANO M G, et al. Reliability assessment of ultrasound muscle echogenicity in patients with rheumatic diseases: Results of a multicenter international web-based study[J/OL]. Front Med (Lausanne), 2022, 9: 1090468 [2024-03-25]. https://pubmed.ncbi.nlm.nih.gov/36733934/. DOI: 10.3389/fmed.2022.1090468.
[13]
DAVE B R, MARATHE N, MAYI S, et al. Does conventional open TLIF cause more muscle injury when compared to minimally invasive TLIF? -A prospective single center analysis[J]. Global Spine J, 2024, 14(1): 93-100. DOI: 10.1177/21925682221095467.
[14]
ABAZA H, TAQASH A, SHATTAL M ABU, et al. Association between muscle mass and overall survival among colorectal cancer patients at tertiary cancer center in the Middle East[J/OL]. Sci Rep, 2024, 14(1): 20836 [2024-03-27]. https://pubmed.ncbi.nlm.nih.gov/39242580/. DOI: 10.1038/s41598-024-68503-7.
[15]
CARVALHO V, SANTOS J, SANTOS SILVA P, et al. Relationship between fatty infiltration of paraspinal muscles and clinical outcome after lumbar discectomy[J/OL]. Brain Spine, 2022, 2: 101697 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/36605389/. DOI: 10.1016/j.bas.2022.101697.
[16]
INOUE K, HARA Y, NAGAWA K, et al. The utility of automatic segmentation of kidney MRI in chronic kidney disease using a 3D convolutional neural network[J/OL]. Sci Rep, 2023, 13(1): 17361 [2024-05-29]. https://pubmed.ncbi.nlm.nih.gov/37833438/. DOI: 10.1038/s41598-023-44539-z.
[17]
LI Y W, JIAO Y, CHEN N, et al. How to select the quantitative magnetic resonance technique for subjects with fatty liver: a systematic review[J]. World J Clin Cases, 2022, 10(25): 8906-8921. DOI: 10.12998/wjcc.v10.i25.8906.
[18]
GAO X C, DU J P, HAO D J, et al. Risk factors for residual back pain following percutaneous vertebral augmentation: the importance of paraspinal muscle fatty degeneration[J]. Int Orthop, 2023, 47(7): 1797-1804. DOI: 10.1007/s00264-023-05809-7.
[19]
PEETERS N H C, VAN DER KRAATS A M, VAN DER KRIEKEN T E, et al. The validity of ultrasound and shear wave elastography to assess the quality of the rotator cuff[J]. Eur Radiol, 2024, 34(3): 1971-1978. DOI: 10.1007/s00330-023-10037-z.
[20]
FUCHS B, WEISHAUPT D, ZANETTI M, et al. Fatty degeneration of the muscles of the rotator cuff: Assessment by computed tomography versus magnetic resonance imaging[J]. J Shoulder Elb Surg, 1999, 8(6): 599-605. DOI: 10.1016/S1058-2746(99)90097-6.
[21]
LIU Z D, DAI G Y, CAO Y, et al. Analysis of degenerative and isthmic lumbar spondylolisthesis from the difference of pelvic parameters and the degree of degeneration through imaging data[J/OL]. J Pers Med, 2023, 13(9): 1420 [2024-06-01]. https://pubmed.ncbi.nlm.nih.gov/37763187/. DOI: 10.3390/jpm13091420.
[22]
GUO J C, XIE D X, ZHANG J N, et al. Characteristics of the paravertebral muscle in adult degenerative scoliosis with PI-LL match or mismatch and risk factors for PI-LL mismatch[J/OL]. Front Surg, 2023, 10: 1111024 [2024-06-08]. https://pubmed.ncbi.nlm.nih.gov/37065994/. DOI: 10.3389/fsurg.2023.1111024.
[23]
NAGAWA K, HARA Y, INOUE K, et al. Three-dimensional convolutional neural network-based classification of chronic kidney disease severity using kidney MRI[J/OL]. Sci Rep, 2024, 14(1): 15775 [2024-06-10]. https://pubmed.ncbi.nlm.nih.gov/38982238/. DOI: 10.1038/s41598-024-66814-3.
[24]
KIM H S, YOON Y C, CHOI B O, et al. Muscle fat quantification using magnetic resonance imaging: case-control study of Charcot-Marie-Tooth disease patients and volunteers[J]. J Cachexia Sarcopenia Muscle, 2019, 10(3): 574-585. DOI: 10.1002/jcsm.12415.
[25]
SOMERSON J S, HSU J E, GORBATY J D, et al. Classifications in brief: goutallier classification of fatty infiltration of the rotator cuff musculature[J]. Clin Orthop Relat Res, 2016, 474(5): 1328-1332. DOI: 10.1007/s11999-015-4630-1.
[26]
DI MATTEO A, SMERILLI G, CIPOLLETTA E, et al. Muscle involvement in systemic lupus erythematosus: multimodal ultrasound assessment and relationship with physical performance[J]. Rheumatology, 2022, 61(12): 4775-4785. DOI: 10.1093/rheumatology/keac196.
[27]
YAN J, WANG L, HUANG Y L, et al. Feasibility study on quantification method of fat infiltration in thigh muscle based on axial T1WI image[J]. Chin J Magn Reson Imag, 2021, 12(12): 49-54. DOI: 10.12015/issn.1674-8034.2021.12.010.
[28]
NARDO L, KARAMPINOS D C, LANSDOWN D A, et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI[J]. J Magn Reson Imaging, 2014, 39(5): 1178-1185. DOI: 10.1002/jmri.24278.
[29]
ALIZAI H, NARDO L, KARAMPINOS D C, et al. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women[J]. Eur Radiol, 2012, 22(7): 1592-1600. DOI: 10.1007/s00330-012-2404-7.
[30]
QADRI S, VARTIAINEN E, LAHELMA M, et al. Marked difference in liver fat measured by histology vs. magnetic resonance-proton density fat fraction: A meta-analysis[J/OL]. JHEP Rep, 2023, 6(1): 100928 [2024-06-20]. https://pubmed.ncbi.nlm.nih.gov/38089550/. DOI: 10.1016/j.jhepr.2023.100928.
[31]
JUNGMANN P M, BAUM T, NEVITT M C, et al. Degeneration in ACL injured knees with and without reconstruction in relation to muscle size and fat content-data from the osteoarthritis initiative[J/OL]. PLoS One, 2016, 11(12): e0166865 [2024-06-21]. https://pubmed.ncbi.nlm.nih.gov/27918596/. DOI: 10.1371/journal.pone.0166865.
[32]
MATSON A P, KIM C, BAJPAI S, et al. The effect of obesity on fatty infiltration of the rotator cuff musculature in patients without rotator cuff tears[J]. Shoulder Elbow, 2019, 11(1Suppl): 30-38. DOI: 10.1177/1758573217736008.
[33]
SHAH S A, KORMPAKIS I, CAVINATTO L, et al. Rotator cuff muscle degeneration and tear severity related to myogenic, adipogenic, and atrophy genes in human muscle[J]. J Orthop Res, 2017, 35(12): 2808-2814. DOI: 10.1002/jor.23593.
[34]
PENG X G, JU S H, QIN Y J, et al. Quantification of liver fat in mice: comparing dual-echo Dixon imaging, chemical shift imaging, and 1H-MR spectroscopy[J]. J Lipid Res, 2011, 52(10): 1847-1855. DOI: 10.1194/jlr.D016691.
[35]
BRAY T J P, SINGH S, LATIFOLTOJAR A, et al. Diagnostic utility of whole body Dixon MRI in multiple myeloma: a multi-reader study[J/OL]. PLoS One, 2017, 12(7): e0180562 [2024-06-25]. https://pubmed.ncbi.nlm.nih.gov/28672007/. DOI: 10.1371/journal.pone.0180562.
[36]
HARA Y, NAGAWA K, YAMAMOTO Y, et al. The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model[J/OL]. Sci Rep, 2022, 12(1): 14776 [2024-07-01]. https://pubmed.ncbi.nlm.nih.gov/36042326/. DOI: 10.1038/s41598-022-19009-7.

PREV Study the value of reduced field-of-view diffusion kurtosis imaging in histological evaluation of endometrial adenocarcinoma
NEXT Quantitative assessment of three-dimensional ultrashort echo time adiabatic T1ρ imaging in articular cartilage degeneration
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn