Share:
Share this content in WeChat
X
Clinical Article
Quantitative assessment of three-dimensional ultrashort echo time adiabatic T1ρ imaging in articular cartilage degeneration
LIU Wenfeng  LIN Junkun  TAN Caihong  LIU Xiaotong  CHEN Xiaojun  DU Jiang  WU Mei 

Cite this article as: LIU W F, LIN J K, TAN C H, et al. Quantitative assessment of three-dimensional ultrashort echo time adiabatic T1ρ imaging in articular cartilage degeneration[J]. Chin J Magn Reson Imaging, 2025, 16(2): 88-93. DOI:10.12015/issn.1674-8034.2025.02.014.


[Abstract] Objective To quantitatively evaluate articular cartilage degeneration using three-dimensional ultrashort-echo-time Adiabatic-T1ρ (3D UTE-AdiabT1ρ) imaging and improve magnetic resonance technique for the early quantitative evaluation of osteoarthritis (OA).Materials and Methods The knee joint scanning was performed in 20 healthy volunteers and 40 OA patients with different degrees of OA using 3D UTE-AdiabT1ρ sequence and Cones data collection. The knee cartilages were divided into 13 subregions slice by slice on sagittal fat suppression images of T2WI and Whole-Organ Magnetic Resonance Imaging Score (WORMS) were performed by two musculoskeletal radiologists. WORMS includes 0, 1, 2, 2.5, 3, 4, and 5 points. According to the extent of lesions, they were divided into localized lesion group (WORMS = 1, 2, 2.5 points) and diffuse lesion group (WORMS = 3, 4, 5 points). According to the depth of lesions, they were divided into partial layer lesions (WORMS = 1, 2, 3, 4 points) and full layer lesions (WORMS = 2.5, 5 points). The differences in UTE-Cones-AdiabT1ρ among different groups based on WORMS were assessed and compared using one-way analysis of variance (ANOVA) and Tukey-Kramer test. The correlations between UTE-Cones-AdiabT1ρ, UTE-T1 and WORMS were evaluated using Spearman's correlation coefficient. Receiver operating characteristic (ROC) was used to evaluate the diagnostic efficacy of UTE-Cones-AdiabT1ρ for the detection of earl cartilage degeneration (WORMS = 1). The DeLong test was used to compare the area under the curve (AUC) of UTE-Cones-AdiabT1ρ, UTE macromolecular fraction (MMF) and magnetization transfer ratio (MTR).Results The UTE-Cones-AdiabT1ρ from 0 to 5 points of WORMS were 36.6 ms, 41.7 ms, 42.7 ms, 45.0 ms, 43.2 ms, 44.3 ms, and 47.9 ms, respectively. UTE-Cones-AdiabT1ρ in localized lesion group was 42.0 ms, with 44.3 ms in diffuse lesion group, 42.5 ms in partial layer lesions, and 46.9 ms in full layer lesions. The higher UTE-Cones-AdiabT1ρ values were observed in higher WORMS, also in larger and deeper lesions, and the differences among these groups were statistically significant (F = 159.7, P < 0.001; F = 423.6, P < 0.001; F = 466.3, P < 0.001). The 3D UTE-Cones-AdiabT1ρ values of different cartilage subregions were different when WORMS=0. 3D UTE-Cones-AdiabT1ρ values were positively correlated with WORMS, lesion ranges and depths (r = 0.55, P < 0.001; r = 0.53, P < 0.001; r = 0.55, P < 0.001), and UTE-T1 values was positively correlated with WORMS (r = 0.27, P < 0.001). The diagnostic threshold of 3D UTE-Cones-AdiabT1ρ for early cartilage degeneration (WORMS = 1) was 39.4 ms, diagnostic sensitivity was 70.9%, and specificity was 69.3%. The AUC of 3D UTE-Cones-AdiabT1ρ in the diagnosis of early cartilage degeneration (WORMS = 1) was 0.76 (95% CI: 0.74 to 0.78), which was similar to that of UTE-MMF (AUC = 0.74; Z = 1.47, P = 0.142) and higher than that of UTE-MTR (AUC = 0.62; Z = 8.67, P < 0.001).Conclusions The 3D UTE-Cones-AdiabT1ρ sequence can be useful in quantitative evaluation of articular cartilage degeneration. It has the clinical value of early diagnosis of OA.
[Keywords] osteoarthritis;knee degeneration;articular cartilage degeneration;magnetic resonance imaging;ultrashort echo time;AdiabT1ρ;quantitative assessment;early diagnosis

LIU Wenfeng1   LIN Junkun2   TAN Caihong3   LIU Xiaotong1   CHEN Xiaojun4   DU Jiang5   WU Mei1*  

1 Department of Radiology, Guangzhou First People's Hospital, Affiliated Second Hospital of South China University of Technology, Guangzhou 510180, China

2 Department of Imaging, Guangdong Provincial Hospital of Traditional Chinese Medicine Ersha Island Branch, Guangzhou 510100, China

3 Department of Medical Imaging, Huizhou Hospital of Guangzhou University of Traditional Chinese Medicine, Huizhou 516000, China

4 Department of Radiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China

5 Department of Radiology, University of California San Diego, San Diego 92037, USA

Corresponding author: WU M, E-mail: may9@sina.com

Conflicts of interest   None.

Received  2024-03-19
Accepted  2025-01-10
DOI: 10.12015/issn.1674-8034.2025.02.014
Cite this article as: LIU W F, LIN J K, TAN C H, et al. Quantitative assessment of three-dimensional ultrashort echo time adiabatic T1ρ imaging in articular cartilage degeneration[J]. Chin J Magn Reson Imaging, 2025, 16(2): 88-93. DOI:10.12015/issn.1674-8034.2025.02.014.

[1]
CHANG E Y, DU J, CHUNG C B. UTE imaging in the musculoskeletal system[J]. J Magn Reson Imaging, 2015, 41(4): 870-883. DOI: 10.1002/jmri.24713.
[2]
DU J, PAK B C, ZNAMIROWSKI R, et al. Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis[J]. Magn Reson Imaging, 2009, 27(4): 557-564. DOI: 10.1016/j.mri.2008.09.003.
[3]
MA Y J, JERBAN S, JANG H, et al. Quantitative ultrashort echo time (UTE) magnetic resonance imaging of bone: an update[J/OL]. Front Endocrinol, 2020, 11: 567417 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/33071975/. DOI: 10.3389/fendo.2020.567417.
[4]
AFSAHI A M, MA Y J, JANG H, et al. Ultrashort echo time magnetic resonance imaging techniques: met and unmet needs in musculoskeletal imaging[J]. J Magn Reson Imaging, 2022, 55(6): 1597-1612. DOI: 10.1002/jmri.28032.
[5]
MA Y J, CHEN Y J, LI L, et al. Trabecular bone imaging using a 3D adiabatic inversion recovery prepared ultrashort TE Cones sequence at 3T[J]. Magn Reson Med, 2020, 83(5): 1640-1651. DOI: 10.1002/mrm.28027.
[6]
HÄNNINEN N, RAUTIAINEN J, RIEPPO L, et al. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue[J/OL]. Sci Rep, 2017, 7: 9606 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/28852032/. DOI: 10.1038/s41598-017-10053-2.
[7]
WU M, MA Y J, LIU M Y, et al. Quantitative assessment of articular cartilage degeneration using 3D ultrashort echo time cones adiabatic T1ρ (3D UTE-Cones-AdiabT1ρ) imaging[J]. Eur Radiol, 2022, 32(9): 6178-6186. DOI: 10.1007/s00330-022-08722-6.
[8]
SU X L, WANG Y T, CHEN J Y, et al. A feasibility study of in vivo quantitative ultra-short echo time-MRI for detecting early cartilage degeneration[J/OL]. Insights Imaging, 2024, 15(1): 162 [2024-10-20]. https://pubmed.ncbi.nlm.nih.gov/38922455/. DOI: 10.1186/s13244-024-01734-4.
[9]
PETERFY C G, GUERMAZI A, ZAIM S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(3): 177-190. DOI: 10.1016/j.joca.2003.11.003.
[10]
2019 DISEASES AND INJURIES COLLABORATORS G B D. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
[11]
NISSI M J, SALO E N, TIITU V, et al. Multi-parametric MRI characterization of enzymatically degraded articular cartilage[J]. J Orthop Res, 2016, 34(7): 1111-1120. DOI: 10.1002/jor.23127.
[12]
CASULA V, AUTIO J, NISSI M J, et al. Validation and optimization of adiabatic T1ρ and T2ρ for quantitative imaging of articular cartilage at 3 T[J]. Magn Reson Med, 2017, 77(3): 1265-1275. DOI: 10.1002/mrm.26183.
[13]
CASULA V, NISSI M J, PODLIPSKÁ J, et al. Elevated adiabatic T1ρ and T2ρ in articular cartilage are associated with cartilage and bone lesions in early osteoarthritis: a preliminary study[J]. J Magn Reson Imaging, 2017, 46(3): 678-689. DOI: 10.1002/jmri.25616.
[14]
MOSHER T J, ZHANG Z, REDDY R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial[J]. Radiology, 2011, 258(3): 832-842. DOI: 10.1148/radiol.10101174.
[15]
XUE Y P, MA Y J, WU M, et al. Quantitative 3D ultrashort echo time magnetization transfer imaging for evaluation of knee cartilage degeneration in vivo[J]. J Magn Reson Imaging, 2021, 54(4): 1294-1302. DOI: 10.1002/jmri.27659.
[16]
ZHANG X, MA Y J, WEI Z, et al. Macromolecular fraction (MMF) from 3D ultrashort echo time cones magnetization transfer (3D UTE-Cones-MT) imaging predicts meniscal degeneration and knee osteoarthritis[J]. Osteoarthritis Cartilage, 2021, 29(8): 1173-1180. DOI: 10.1016/j.joca.2021.04.004.
[17]
JERBAN S, MOHAMMADI H S, ATHERTYA J S, et al. Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling[J/OL]. NMR Biomed, 2024, 37(12): e5237 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/39155273/. DOI: 10.1002/nbm.5237.
[18]
XUE Y P, JANG H, BYRA M, et al. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks[J]. Eur Radiol, 2021, 31(10): 7653-7663. DOI: 10.1007/s00330-021-07853-6.
[19]
DU J, STATUM S, ZNAMIROWSKI R, et al. Ultrashort TE T1ρ magic angle imaging[J]. Magn Reson Med, 2013, 69(3): 682-687. DOI: 10.1002/mrm.24296.
[20]
SHAO H, PAULI C, LI S, et al. Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage[J]. Osteoarthritis Cartilage, 2017, 25(12): 2022-2030. DOI: 10.1016/j.joca.2017.01.013.
[21]
WU M, MA Y J, WAN L D, et al. Magic angle effect on adiabatic T1ρ imaging of the Achilles tendon using 3D ultrashort echo time cones trajectory[J/OL]. NMR Biomed, 2020, 33(8): e4322 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/32431025/. DOI: 10.1002/nbm.4322.
[22]
WU M, MA Y J, KASIBHATLA A, et al. Convincing evidence for magic angle less-sensitive quantitative T1ρ imaging of articular cartilage using the 3D ultrashort echo time cones adiabatic T1ρ (3D UTE cones-AdiabT1ρ) sequence[J]. Magn Reson Med, 2020, 84(5): 2551-2560. DOI: 10.1002/mrm.28317.
[23]
WU M, ZHAO W, WAN L D, et al. Quantitative three-dimensional ultrashort echo time cones imaging of the knee joint with motion correction[J/OL]. NMR Biomed, 2020, 33(1): e4214 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/31713936/. DOI: 10.1002/nbm.4214.
[24]
JERBAN S, MA Y J, KASIBHATLA A, et al. Ultrashort echo time adiabatic T1ρ (UTE-Adiab-T1ρ) is sensitive to human cadaveric knee joint deformation induced by mechanical loading and unloading[J]. Magn Reson Imaging, 2021, 80: 98-105. DOI: 10.1016/j.mri.2021.04.014.
[25]
JERBAN S, AFSAHI A M, MA Y J, et al. Correlations between elastic modulus and ultrashort echo time (UTE) adiabatic T1ρ relaxation time (UTE-Adiab-T1ρ) in Achilles tendons and entheses[J/OL]. J Biomech, 2023, 160: 111825 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/37856976/. DOI: 10.1016/j.jbiomech.2023.111825.
[26]
JERBAN S, HANANOUCHI T, MA Y J, et al. Correlation between the elastic modulus of anterior cruciate ligament (ACL) and quantitative ultrashort echo time (UTE) magnetic resonance imaging[J]. J Orthop Res, 2022, 40(10): 2330-2339. DOI: 10.1002/jor.25266.
[27]
JERBAN S, MA Y J, AFSAHI A M, et al. Lower macromolecular content in tendons of female patients with osteoporosis versus patients with osteopenia detected by ultrashort echo time (UTE) MRI[J/OL]. Diagnostics, 2022, 12(5): 1061 [2024-09-06]. https://pubmed.ncbi.nlm.nih.gov/35626217/. DOI: 10.3390/diagnostics12051061.
[28]
CHENG K Y, MOAZAMIAN D, MA Y J, et al. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis[J]. Skeletal Radiol, 2023, 52(11): 2149-2157. DOI: 10.1007/s00256-022-04269-1.
[29]
MA Y J, CARL M, TANG Q B, et al. Whole knee joint mapping using a phase modulated UTE adiabatic T1ρ (PM-UTE-AdiabT1ρ) sequence[J]. Magn Reson Med, 2024, 91(3): 896-910. DOI: 10.1002/mrm.29871.
[30]
LIU J G, ZHANG J. Progress in the application of ultrashort echo time magnetic resonance imaging in musculoskeletal system[J]. Chin J Magn Reson Imag, 2020, 11(2): 158-160. DOI: 10.12015/issn.1674-8034.2020.02.017.

PREV A comparative study of MRI-based methods for quantitative assessment of skeletal muscle fat content
NEXT Quantitative assessment of articular cartilage in the foot and ankle of amateur marathon runners by T2* mapping and analysis of its related influencing factors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn