Share:
Share this content in WeChat
X
Clinical Article
Quantitative assessment of articular cartilage in the foot and ankle of amateur marathon runners by T2* mapping and analysis of its related influencing factors
GAO Yali  LAN Xiaochuan  WANG Shu  SONG Lingheng  CHEN Wei 

Cite this article as: GAO Y L, LAN X C, WANG S, et al. Quantitative assessment of articular cartilage in the foot and ankle of amateur marathon runners by T2* mapping and analysis of its related influencing factors[J]. Chin J Magn Reson Imaging, 2025, 16(2): 94-99. DOI:10.12015/issn.1674-8034.2025.02.015.


[Abstract] Objective Quantitative analysis of T2* values of articular cartilage in the foot and ankle of amateur marathon runners based on T2* mapping, and analysis of their relationship with gender, age, body mass index (BMI), running age, and running volume.Materials and Methods From July 2023 to September 2023, 48 long-distance runners in Chongqing were recruited according to the inclusion and exclusion criteria of this study, including 36 cases with running distance volume < 300 km/month (low to medium running volume group) and 12 cases with running distance volume ≥ 300 km/month (high running volume group). The unilateral asymptomatic ankle joints of all subjects were scanned using MRI, and the scanning sequences included T2* mapping multi-echo spine cho (SE) sequence sagittal, proton density-weighted imaging fat-saturated (PDWI-FS) sequence sagittal, coronal, transverse axial, and T1-weighted imaging fat-saturated (T1WI-FS) sequence transverse axial. The cartilage of the talar dome, the calcaneal surfaces and cuboid surfaces of the calcaneocuboid joint, the calcaneal surfaces and talar surfaces of the posterior subtalar joint were outlined as regions of interest (ROI) along the edges of the articular cartilage contour, and the corresponding T2* values were obtained. Analyze the relationship between the T2* values of cartilage and age, BMI, running age with multiple linear regression, and running volume, gender with independent samples t-test.Results (1) The differences of cartilage T2* values of the talar dome, the calcaneal surfaces and cuboid surfaces of the calcaneocuboid joint, the calcaneal surfaces and talar surfaces of the posterior subtalar joint were statistically significant in gender (P = 0.001, P < 0.001, P = 0.002, P = 0.008, P = 0.004). (2) The T2* values of cartilage of the talar dome and calcaneal surface of posterior subtalar joint of high running group were higher than those of low to medium running group (P = 0.014, 0.023), the differences in T2* values of cartilage of the calcaneal surface and cuboid surface of the calcaneocuboid joint, and the talar surface of the posterior subtalar joint were not statistically significant among the different running group (P = 0.987, 0.072, 0.724). (3) T2* values of cartilage in the talar dome, the calcaneal surfaces and the cuboid surfaces of the calcaneocuboid joint, the calcaneal surfaces and the talar surfaces of the posterior subtalar joint are positively correlated with BMI (r = 0.376, 0.384, 0.300, 0.422, 0.455; P = 0.005, 0.004, 0.019, 0.001, 0.001).Conclusions In amateur marathoners, high running volume is more likely to result in cartilage injuries to the talar dome, the calcaneal surfaces of the posterior subtalar joint compared with low running volume; whereas high BMI increase the risk of cartilage injuries to the talar dome, heel facet of the calcaneus and dice joints, and cartilage injuries to the talar dome, the calcaneal surfaces and cuboid surfaces of the calcaneocuboid joint, the calcaneal surfaces and talar surfaces of the posterior subtalar joint, compared with lower BMI.
[Keywords] amateur marathon;running;cartilage;magnetic resonance imaging;T2* mapping

GAO Yali1, 2   LAN Xiaochuan2   WANG Shu2   SONG Lingheng2   CHEN Wei1*  

1 Department of Radiology, the Southwest Hospital of AMU, Chongqing 400037, China

2 Department of Radiology, 958th Army Hospital, Chongqing 400020, China

Corresponding author: CHEN W, E-mail: landcw@tmmu.edu.cn

Conflicts of interest   None.

Received  2024-07-30
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.015
Cite this article as: GAO Y L, LAN X C, WANG S, et al. Quantitative assessment of articular cartilage in the foot and ankle of amateur marathon runners by T2* mapping and analysis of its related influencing factors[J]. Chin J Magn Reson Imaging, 2025, 16(2): 94-99. DOI:10.12015/issn.1674-8034.2025.02.015.

[1]
XU Y L, HE Z C, XU C, et al. 2014 Shanghai international marathon: visiting medical services and risk factors among participants[J]. J Environ Occup Med, 2016, 33(2): 108-112. DOI: 10.13213/j.cnki.jeom.2016.15317.
[2]
SUN J H, WANG L, WU X H, et al. Medical emergency management of Yangzhou international half marathon[J]. Chin J Phys Med, 2013, 32(11): 1018-1020. DOI: 10.16038/j.1000-6710.2013.11.017.
[3]
VAN POPPEL D, VAN DER WORP M, SLABBEKOORN A, et al. Risk factors for overuse injuries in short- and long-distance running: a systematic review[J]. J Sport Health Sci, 2021, 10(1): 14-28. DOI: 10.1016/j.jshs.2020.06.006.
[4]
WANG P, HUANG G, ZHANG W W, et al. The application of MRI T2-mapping in the knee cartilage of the non-professional athletes after marathon[J]. J China Clin Med Imag, 2014, 25(12): 877-881.
[5]
FRANCIS P, WHATMAN C, SHEERIN K, et al. The proportion of lower limb running injuries by gender, anatomical location and specific pathology: a systematic review[J]. J Sports Sci Med, 2019, 18(1): 21-31.
[6]
NAKAGAWA S, ARAI Y, INOUE H, et al. Relationship of alignment in the lower extremity with early degeneration of articular cartilage after resection of the medial Meniscus: Quantitative analysis using T2 mapping[J/OL]. Medicine, 2020, 99(44): e22984 [2024-12-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7598867/. DOI: 10.1097/MD.0000000000022984.
[7]
LE J, PENG Q, SPERLING K. Biochemical magnetic resonance imaging of knee articular cartilage: T1rho and T2 mapping as cartilage degeneration biomarkers[J]. Ann N Y Acad Sci, 2016, 1383(1): 34-42. DOI: 10.1111/nyas.13189.
[8]
CAO G J, GAO S B, XIONG B. Application of quantitative T1, T2 and T2* mapping magnetic resonance imaging in cartilage degeneration of the shoulder joint[J/OL]. Sci Rep, 2023, 13(1): 4558 [2024-12-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10027866/. DOI: 10.1038/s41598-023-31644-2.
[9]
SUROWIEC R K, LUCAS E P, HO C P. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1385-1395. DOI: 10.1007/s00167-013-2714-6.
[10]
YU H X, SHEN Y Y, ZHANG Y J, et al. Application progress of quantitative MRI technologies in evaluating knee cartilage of runners[J]. Int J Med Radiol, 2022, 45(5): 588-593. DOI: 10.19300/j.2022.Z19608.
[11]
TSAI P H, WONG C C, CHAN W P. Radial T2* mapping reveals early meniscal abnormalities in patients with knee osteoarthritis[J]. Eur Radiol, 2022, 32(8): 5642-5649. DOI: 10.1007/s00330-022-08641-6.
[12]
LI X R, LI W. Research progress in quantitative magnetic resonance imaging of articular cartilage injury[J]. Chin J Magn Reson Imag, 2023, 14(11): 198-202. DOI: 10.12015/issn.1674-8034.2023.11.034.
[13]
ANDREISEK G, WEIGER M. T2* mapping of articular cartilage: current status of research and first clinical applications[J]. Invest Radiol, 2014, 49(1): 57-62. DOI: 10.1097/RLI.0b013e3182a574e1.
[14]
SCHÜTZ U, EHRHARDT M, GÖD S, et al. A mobile MRI field study of the biochemical cartilage reaction of the knee joint during a 4, 486 km transcontinental multistage ultra-marathon using T2* mapping[J/OL]. Sci Rep, 2020, 10: 8157 [2024-12-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7235258/. DOI: 10.1038/s41598-020-64994-2.
[15]
ZHU D T, WU W H, YU W J, et al. Ultrashort echo time magnetization transfer imaging of knee cartilage and Meniscus after long-distance running[J]. Eur Radiol, 2023, 33(7): 4842-4854. DOI: 10.1007/s00330-023-09462-x.
[16]
ZHANG P, YU B H, ZHANG R X, et al. Longitudinal study of the morphological and T2* changes of knee cartilages of marathon runners using prototype software for automatic cartilage segmentation[J/OL]. 2021, 94(1119): 20200833 [2024-12-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8011266/. DOI: 10.1259/bjr.20200833.
[17]
ZHANG Y J, HUANG Y, ZHANG L, et al. Effects of long-term running on the structure and biochemical composition of knee cartilage in males: a cross-sectional study[J]. Quant Imaging Med Surg, 2024, 14(8): 6036-6047. DOI: 10.21037/qims-23-1563.
[18]
WANG L, MENG F J, ZHOU J, et al. Application of T\n 2* mapping to evaluate the acute effects of different foot-strike patterns on knee cartilage after running in amateur marathon runners\n[J]. Chin J Radiol, 2023, 57(12): 1296-1304. DOI: 10.3760/cma.j.cn112149-20230306-00163.
[19]
WANG Z Z, AI S T, TIAN F, et al. Higher body mass index is associated with biochemical changes in knee articular cartilage after marathon running: a quantitative T2-relaxation MRI study[J/OL]. Orthop J Sports Med, 2020, 8(8): 2325967120943874 [2024-12-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7427140/. DOI: 10.1177/2325967120943874.
[20]
FANG Y J, LI W, GUO S S, et al. MRI features and related factors of ankle injury in amateur marathoners[J]. Chin J Radiol, 2019, 53(10): 813-817. DOI: 10.3760/cma.j.issn.1005-1201.2019.10.004.
[21]
WU W B, KANG Z Z, MU D, et al. T2 mapping for quantitative assessment of ankle cartilage of weightlifters[J/OL]. Sci Rep, 2023, 13: 19160 [2024-12-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10628267/. DOI: 10.1038/s41598-023-46259-w.
[22]
LIU Z H, XU K N, PAN S C, et al. Manganese-enhanced magnetic resonance assessment of changes in hippocampal neural function after the treatment of radiation-induced brain injury with bone marrow mesenchymal stem cells[J/OL]. Brain Res Bull, 2023, 204: 110795 [2024-12-13]. https://pubmed.ncbi.nlm.nih.gov/37863438/. DOI: 10.1016/j.brainresbull.2023.110795.
[23]
GOLDITZ T, STEIB S, PFEIFER K, et al. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes[J]. Osteoarthritis Cartilage, 2014, 22(10): 1377-1385. DOI: 10.1016/j.joca.2014.04.029.
[24]
TRATTNIG S, MAMISCH T C, WELSCH G H, et al. Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study[J]. Invest Radiol, 2007, 42(6): 442-448. DOI: 10.1097/01.rli.0000262088.67368.49.
[25]
LUO P, LU L, XU R, et al. Gaining insight into updated MR imaging for quantitative assessment of cartilage injury in knee osteoarthritis[J]. Curr Rheumatol Rep, 2024, 26(9): 311-320. DOI: 10.1007/s11926-024-01152-x.
[26]
SHEN Y, YAO W, HUANG Y, et al. MRI analysis of and factors related to knee injuries in amateur marathon runners[J/OL]. PLoS One, 2024, 19(7): e0306257 [2024-12-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11232983/. DOI: 10.1371/journal.pone.0306257.
[27]
COLEMAN M C, RAMAKRISHNAN P S, BROUILLETTE M J, et al. Injurious loading of articular cartilage compromises chondrocyte respiratory function[J]. Arthritis Rheumatol, 2016, 68(3): 662-671. DOI: 10.1002/art.39460.
[28]
BUIST I, BREDEWEG S W, LEMMINK K A P M, et al. Predictors of running-related injuries in novice runners enrolled in a systematic training program: a prospective cohort study[J]. Am J Sports Med, 2010, 38(2): 273-280. DOI: 10.1177/0363546509347985.
[29]
HART H F, VAN MIDDELKOOP M, STEFANIK J J, et al. Obesity is related to incidence of patellofemoral osteoarthritis: the Cohort Hip and Cohort Knee (CHECK) study[J]. Rheumatol Int, 2020, 40(2): 227-232. DOI: 10.1007/s00296-019-04472-9.
[30]
KIM H K, FERNANDEZ J, LOGAN C, et al. T2 relaxation time measurements in tibiotalar cartilage after barefoot running and its relationship to ankle biomechanics[J]. J Biomech, 2019, 90: 103-112. DOI: 10.1016/j.jbiomech.2019.04.046.
[31]
DUGAN S A, BHAT K P. Biomechanics and analysis of running gait[J]. Phys Med Rehabil Clin N Am, 2005, 16(3): 603-621. DOI: 10.1016/j.pmr.2005.02.007.
[32]
RODGERS M M. Dynamic biomechanics of the normal foot and ankle during walking and running[J]. Phys Ther, 1988, 68(12): 1822-1830. DOI: 10.1093/ptj/68.12.1822.
[33]
HINTERMANN B, REGAZZONI P, LAMPERT C, et al. Arthroscopic findings in acute fractures of the ankle[J]. 2000, 82(3): 345-351. DOI: 10.1302/0301-620x.82b3.10064.
[34]
LENZ A L, STROBEL M A, ANDERSON A M, et al. Assignment of local coordinate systems and methods to calculate tibiotalar and subtalar kinematics: a systematic review[J/OL]. J Biomech, 2021, 120: 110344 [2024-12-13]. https://pubmed.ncbi.nlm.nih.gov/33744722/. DOI: 10.1016/j.jbiomech.2021.110344.
[35]
MARTIJN H A, LAMBERS K T A, DAHMEN J, et al. High incidence of (osteo)chondral lesions in ankle fractures[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(5): 1523-1534. DOI: 10.1007/s00167-020-06187-y.
[36]
BRUNS J, ROSENBACH B. Pressure distribution at the ankle joint[J]. Clin Biomech, 1990, 5(3): 153-161. DOI: 10.1016/0268-0033(90)90018-2.
[37]
DAHMEN J, JADDI S, HAGEMEIJER N C, et al. Incidence of (osteo)chondral lesions of the ankle in isolated syndesmotic injuries: a systematic review and meta-analysis[J/OL]. Cartilage, 2022, 13(2): 19476035221102569 [2024-12-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9168886/. DOI: 10.1177/19476035221102569.
[38]
ROEMER F W, JOMAAH N, NIU J B, et al. Ligamentous injuries and the risk of associated tissue damage in acute ankle sprains in athletes: a cross-sectional MRI study[J]. Am J Sports Med, 2014, 42(7): 1549-1557. DOI: 10.1177/0363546514529643.

PREV Quantitative assessment of three-dimensional ultrashort echo time adiabatic T1ρ imaging in articular cartilage degeneration
NEXT An experimental study of 3.0 T magnetic resonance imaging to evaluate autoimmune prostatitis in rats
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn