Share:
Share this content in WeChat
X
Original Article
Evaluation of type-H vessels in bone marrow of type 1 diabetic rabbits based on ultra-small superparamagnetic nano-iron oxide enhanced MRI
LEI Haoran  WANG Kejun  LI Liang  LIU Changsheng  ZHA Yunfei 

Cite this article as: LEI H R, WANG K J, LI L, et al. Evaluation of type-H vessels in bone marrow of type 1 diabetic rabbits based on ultra-small superparamagnetic nano-iron oxide enhanced MRI[J]. Chin J Magn Reson Imaging, 2025, 16(2): 107-113. DOI:10.12015/issn.1674-8034.2025.02.017.


[Abstract] Objective To explore the feasibility of quantitative and visual targeting evaluation of type-H vessel structure in bone marrow of rabbits with type 1 diabetes mellitus (T1DM) based on ultra-small superparamagnetic nano-iron oxide (USPIO) enhanced MRI combined with in vitro micro-computed tomography (Micro-CT) microangiography.Materials and Methods T1DM rabbits were constructed by injecting alloxan into the auricular vein in 20 out of 40 Japanese white rabbits (2-3 month-old). The remaining rabbits received equivalent volumes of normal saline via auricular marginal vein injection as controls. After 4 months of successful modeling, samples from metaphyseal and diaphyseal parts of tibia were taken respectively for sorting and identification of bone marrow Type-H vascular endothelial cells, Type-H vascular immunofluorescence detection, USPIO labeling of bone marrow endothelial cells in vitro and in vivo, MRI and Micro-CT microangiography of bone marrow in vitro. The proportion of Type-H vascular endothelial cells, average fluorescence intensity, T2 value of MRI, vessel volume/tissue volume (VV/TV) and vessel number (VN) were measured respectively.Results Compared with the control group, the proportion of type-H vascular endothelial cells, average fluorescence intensity, VV/TV and VN of bone marrow were significantly decreased in T1DM rabbits (P < 0.05), and the T2 value of MRI in bone marrow showed significant differences before and after USPIO injection (P < 0.05). The metaphyseal and diaphysis of T1DM rabbits were respectively compared with the control group. The proportion of type-H vascular endothelial cells, average fluorescence intensity, maximum change of T2 value and fastest time rate, VV/TV and VN in metaphysis were significantly different from those in the diaphysis (P < 0.05).Conclusions USPIO enhanced MRI combined with in vitro Micro-CT microvascular imaging is feasible for quantitative and visual targeting evaluation of bone marrow type-H vascular structure in T1DM rabbits. This study provides imaging evidence for exploring diabetic bone marrow microangiopathy.
[Keywords] type 1 diabetic rabbits;bone marrow microvessels;endothelial cells;ultra-small superparamagnetic nano-iron oxide;magnetic resonance imaging;micro-CT

LEI Haoran   WANG Kejun   LI Liang   LIU Changsheng   ZHA Yunfei*  

Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Corresponding author: ZHA Y F, E-mail: zhayunfei999@126.com

Conflicts of interest   None.

Received  2024-11-25
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.017
Cite this article as: LEI H R, WANG K J, LI L, et al. Evaluation of type-H vessels in bone marrow of type 1 diabetic rabbits based on ultra-small superparamagnetic nano-iron oxide enhanced MRI[J]. Chin J Magn Reson Imaging, 2025, 16(2): 107-113. DOI:10.12015/issn.1674-8034.2025.02.017.

[1]
SHANBHOGUE V V, HANSEN S, FROST M, et al. Bone disease in diabetes: another manifestation of microvascular disease?[J]. Lancet Diabetes Endocrinol, 2017, 5(10): 827-838. DOI: 10.1016/S2213-8587(17)30134-1.
[2]
SAFAROVA S S. Alterations of bone metabolism in patients with diabetes mellitus[J/OL]. Int J Endocrinol, 2019, 2019: 5984681 [2024-11-24]. https://pubmed.ncbi.nlm.nih.gov/31933638/. DOI: 10.1155/2019/5984681.
[3]
DIAL A G, MONACO C M F, GRAFHAM G K, et al. Impaired function and altered morphology in the skeletal muscles of adult men and women with type 1 diabetes[J]. J Clin Endocrinol Metab, 2021, 106(8): 2405-2422. DOI: 10.1210/clinem/dgab261.
[4]
FAIENZA M F, PONTRELLI P, BRUNETTI G. Type 2 diabetes and bone fragility in children and adults[J]. World J Diabetes, 2022, 13(11): 900-911. DOI: 10.4239/wjd.v13.i11.900.
[5]
ZHENG Z W, CHEN Y H, WU D Y, et al. Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis[J]. Theranostics, 2018, 8(19): 5482-5500. DOI: 10.7150/thno.28315.
[6]
XU L L, YU J, WANG O, et al. Comparison of differences in bone microarchitecture in adult- versus juvenile-onset type 1 diabetes Asian males versus non-diabetes males: an observational cross-sectional pilot study[J]. Endocrine, 2021, 71(1): 87-95. DOI: 10.1007/s12020-020-02480-5.
[7]
JANGHORBANI M, VAN DAM R M, WILLETT W C, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture[J]. Am J Epidemiol, 2007, 166(5): 495-505. DOI: 10.1093/aje/kwm106.
[8]
KUSUMBE A P, RAMASAMY S K, ADAMS R H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328. DOI: 10.1038/nature13145.
[9]
HU X F, XIANG G, WANG T J, et al. Impairment of type H vessels by NOX2-mediated endothelial oxidative stress: critical mechanisms and therapeutic targets for bone fragility in streptozotocin-induced type 1 diabetic mice[J]. Theranostics, 2021, 11(8): 3796-3812. DOI: 10.7150/thno.50907.
[10]
PENG Y, WU S, LI Y S, et al. Type H blood vessels in bone modeling and remodeling[J]. Theranostics, 2020, 10(1): 426-436. DOI: 10.7150/thno.34126.
[11]
HU L, ZHA Y F, WANG L, et al. Quantitative evaluation of vertebral microvascular permeability and fat fraction in alloxan-induced diabetic rabbits[J]. Radiology, 2018, 287(1): 128-136. DOI: 10.1148/radiol.2017170760.
[12]
LIU B Y, HU L, WANG L, et al. Evaluation of microvascular permeability of skeletal muscle and texture analysis based on DCE-MRI in alloxan-induced diabetic rabbits[J]. Eur Radiol, 2021, 31(8): 5669-5679. DOI: 10.1007/s00330-021-07705-3.
[13]
YANG Q, LI L, ZHA Y F, et al. Microvascular permeability and texture analysis of the skeletal muscle of diabetic rabbits with critical limb ischaemia based on DCE-MRI[J/OL]. Front Endocrinol, 2022, 13: 783163 [2024-11-24]. https://pubmed.ncbi.nlm.nih.gov/35250854/. DOI: 10.3389/fendo.2022.783163.
[14]
LU Y, HUANG J, NEVEROVA N V, et al. USPIOs as targeted contrast agents in cardiovascular magnetic resonance imaging[J/OL]. Curr Cardiovasc Imaging Rep, 2021, 14(2): 2 [2024-11-24]. https://pubmed.ncbi.nlm.nih.gov/33824694/. DOI: 10.1007/s12410-021-09552-8.
[15]
SHEN Z, HUANG Z Y, HE Z J, et al. Dynamic expression of H-type vessels coupled with bone repair effect in bone induced membrane for massive bone defects[J]. Chin J Tissue Eng Res, 2025, 29(28): 5950-5956. DOI: 10.12307/2025.479.
[16]
KOH B I, MOHANAKRISHNAN V, JEONG H W, et al. Adult skull bone marrow is an expanding and resilient haematopoietic reservoir[J]. Nature, 2024, 636(8041): 172-181. DOI: 10.1038/s41586-024-08163-9.
[17]
CUI Z, CRANE J, XIE H, et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone[J]. Ann Rheum Dis, 2016, 75(9): 1714-1721. DOI: 10.1136/annrheumdis-2015-207923.
[18]
LIU T, ZHAO H, LI J, et al. Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxan-induced diabetic rabbits[J]. Cardiovasc Ther, 2014, 32(4): 178-183. DOI: 10.1111/1755-5922.12079.
[19]
BACCIN C, AL-SABAH J, VELTEN L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization[J]. Nat Cell Biol, 2020, 22(1): 38-48. DOI: 10.1038/s41556-019-0439-6.
[20]
IGA T, KOBAYASHI H, KUSUMOTO D, et al. Spatial heterogeneity of bone marrow endothelial cells unveils a distinct subtype in the epiphysis[J]. Nat Cell Biol, 2023, 25(10): 1415-1425. DOI: 10.1038/s41556-023-01240-7.
[21]
QIU J M, LIU J, TIAN L M, et al. Knockdown of LOX-1 ameliorates bone quality and generation of type H blood vessels in diabetic mice[J/OL]. Arch Biochem Biophys, 2024, 752: 109870 [2024-11-23]. https://pubmed.ncbi.nlm.nih.gov/38141905/. DOI: 10.1016/j.abb.2023.109870.
[22]
CHEN W H, JIN X Y, WANG T, et al. Ginsenoside Rg1 interferes with the progression of diabetic osteoporosis by promoting type H angiogenesis modulating vasculogenic and osteogenic coupling[J/OL]. Front Pharmacol, 2022, 13: 1010937 [2024-11-23]. https://pubmed.ncbi.nlm.nih.gov/36467080/. DOI: 10.3389/fphar.2022.1010937.
[23]
LI J Y, CHEN X D, REN L, et al. Type H vessel/platelet-derived growth factor receptor β+ perivascular cell disintegration is involved in vascular injury and bone loss in radiation-induced bone damage[J/OL]. Cell Prolif, 2023, 56(7): e13406 [2024-11-23]. https://pubmed.ncbi.nlm.nih.gov/36694343/. DOI: 10.1111/cpr.13406.
[24]
NISHIYAMA M, NAMITA T, KONDO K, et al. Ring-array photoacoustic tomography for imaging human finger vasculature[J]. J Biomed Opt, 2019, 24(9): 1-12. DOI: 10.1117/1.JBO.24.9.096005.
[25]
LIU P, WANG J, XUE Y, et al. Perfusion in vivo bioreactor promotes regeneration of vascularized tissue-engineered bone[J]. Regen Med, 2023, 18(9): 707-718. DOI: 10.2217/rme-2023-0101.
[26]
PINHO S, FRENETTE P S. Haematopoietic stem cell activity and interactions with the niche[J]. Nat Rev Mol Cell Biol, 2019, 20(5): 303-320. DOI: 10.1038/s41580-019-0103-9.
[27]
KHURANA A, MARTI F, POWELL D K, et al. Cell sorting microbeads as novel contrast agent for magnetic resonance imaging[J/OL]. Sci Rep, 2022, 12(1): 17640 [2024-11-23]. https://pubmed.ncbi.nlm.nih.gov/36271098/. DOI: 10.1038/s41598-022-21762-8.
[28]
TIWARI A, HAJ N, ELGRABLY B, et al. Cross-modal imaging reveals nanoparticle uptake dynamics in hematopoietic bone marrow during inflammation[J]. ACS Nano, 2024, 18(9): 7098-7113. DOI: 10.1021/acsnano.3c11201.
[29]
SINDHWANI S, SYED A M, NGAI J, et al. The entry of nanoparticles into solid tumours[J]. Nat Mater, 2020, 19(5): 566-575. DOI: 10.1038/s41563-019-0566-2.
[30]
ROHM T V, MEIER D T, OLEFSKY J M, et al. Inflammation in obesity, diabetes, and related disorders[J]. Immunity, 2022, 55(1): 31-55. DOI: 10.1016/j.immuni.2021.12.013.
[31]
CAI Y, ZANG G Y, HUANG Y, et al. Advances in neovascularization after diabetic ischemia[J]. World J Diabetes, 2022, 13(11): 926-939. DOI: 10.4239/wjd.v13.i11.926.

PREV An experimental study of 3.0 T magnetic resonance imaging to evaluate autoimmune prostatitis in rats
NEXT Research progress of fMRI in brain network remodeling and brain plasticity during stroke recovery
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn