Share:
Share this content in WeChat
X
Review
Research progress of fMRI in brain network remodeling and brain plasticity during stroke recovery
HUANG Kexin  ZHANG Tijiang 

Cite this article as: HUANG K X, ZHANG T J. Research progress of fMRI in brain network remodeling and brain plasticity during stroke recovery[J]. Chin J Magn Reson Imaging, 2025, 16(2): 114-118. DOI:10.12015/issn.1674-8034.2025.02.018.


[Abstract] With the advancement of neuroimaging technology, non-invasive methods for studying the structure and function of the human brain have become increasingly diverse and multifaceted. Currently, by utilizing diverse connectomics approaches based on magnetic resonance data, researchers have elucidated abnormalities at various hierarchical and dimensional levels in central nervous system diseases. This has provided multifaceted scientific analyses and explanations for the pathogenesis of diseases, cognitive dysfunction, and the prediction and early intervention of diseases. However, current connectomics-based research predominantly focuses on either structure or function, lacking a systematic description that integrates both aspects. This limitation impedes a comprehensive understanding of the complexity of brain networks and the multidimensional impacts of neurological disorders. Therefore, this paper is to review the advancements in brain connectivity research within the context of central nervous system diseases, assist in the judicious selection of relevant techniques and methods and enhance the understanding of the structural and functional impairments associated with neurological disorders.
[Keywords] central nervous system disease;connectomics;magnetic resonance imaging;structural connectivity;functional connectivity;effective connectivity

HUANG Kexin1   ZHANG Tijiang1, 2*  

1 Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China

2 Department of Medical Technology, Bijie Medical College, Bijie 551700, China

Corresponding author: ZHANG T J, E-mail: tijzhang@163.com

Conflicts of interest   None.

Received  2024-11-06
Accepted  2025-02-19
DOI: 10.12015/issn.1674-8034.2025.02.018
Cite this article as: HUANG K X, ZHANG T J. Research progress of fMRI in brain network remodeling and brain plasticity during stroke recovery[J]. Chin J Magn Reson Imaging, 2025, 16(2): 114-118. DOI:10.12015/issn.1674-8034.2025.02.018.

[1]
TU W Y, XU W, BAI L, et al. Local protein synthesis at neuromuscular synapses is required for motor functions[J/OL]. Cell Rep, 2024, 43(9): 114661 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/39178112/. DOI: 10.1016/j.celrep.2024.114661.
[2]
VAN ESSEN D C, SMITH S M, BARCH D M, et al. The WU-Minn Human Connectome Project: an overview[J]. Neuroimage, 2013, 80: 62-79. DOI: 10.1016/j.neuroimage.2013.05.041.
[3]
GE J, YANG G, HAN M, et al. Increasing diversity in connectomics with the Chinese Human Connectome Project[J]. Nat Neurosci, 2023, 26(1): 163-172. DOI: 10.1038/s41593-022-01215-1.
[4]
KIM H H, CHUNG G H, PARK S H, et al. Language-Related White-Matter-Tract Deficits in Children with Benign Epilepsy with Centrotemporal Spikes: A Retrospective Study[J]. J Clin Neurol, 2019, 15(4): 502-510. DOI: 10.3988/jcn.2019.15.4.502.
[5]
CHEN Y, WANG Y, SONG Z, et al. Abnormal white matter changes in Alzheimer's disease based on diffusion tensor imaging: A systematic review[J/OL]. Ageing Res Rev, 2023, 87: 101911 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/38870842/. DOI: 10.1016/j.arr.2023.101911.
[6]
PARSAEI M, SHEIPOURI A, PARTOVIFAR P, et al. Diffusion magnetic resonance imaging for treatment response prediction in schizophrenia spectrum disorders: A systematic review[J/OL]. Psychiatry Res Neuroimaging, 2024, 342: 111841 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/38870842/. DOI: 10.1016/j.pscychresns.2024.111841.
[7]
GREAVES M D, NOVELLI L, MANSOUR L S, et al. Structurally informed models of directed brain connectivity[J]. Nat Rev Neurosci, 2025, 26(1): 23-41. DOI: 10.1038/s41583-024-00881-3.
[8]
YANG J, GOHEL S, VACHHA B. Current methods and new directions in resting state fMRI[J]. Clin Imaging, 2020, 65: 47-53. DOI: 10.1016/j.clinimag.2020.04.004.
[9]
GRAVESTEIJN A S, BECKERMAN H, DE JONG B A, et al. Neuroprotective effects of exercise in people with progressive multiple sclerosis (Exercise PRO-MS): study protocol of a phase II trial[J/OL]. BMC Neurol, 2020, 20(1): 177 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/32393193/. DOI: 10.1186/s12883-020-01765-6.
[10]
SHAMIR I, ASSAF Y. Tutorial: a guide to diffusion MRI and structural connectomics[J]. Nat Protoc, 2025, 20(2): 317-335. DOI: 10.1038/s41596-024-01052-5.
[11]
KOK J G, LEEMANS A, TEUNE L K, et al. Structural Network Analysis Using Diffusion MRI Tractography in Parkinson's Disease and Correlations With Motor Impairment[J/OL]. Front Neurol, 2020, 11: 841 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/32982909/. DOI: 10.3389/fneur.2020.00841.
[12]
JING M, MCGINNITY T M, COLEMAN S, et al. Temporal changes of diffusion patterns in mild traumatic brain injury via group-based semi-blind source separation[J]. IEEE J Biomed Health Inform, 2015, 19(4): 1459-1471. DOI: 10.1109/jbhi.2014.2352119.
[13]
BU X, CAO M, HUANG X, et al. The structural connectome in ADHD[J]. Psychoradiology, 2021, 1(4): 257-271. DOI: 10.1093/psyrad/kkab021.
[14]
YEH C H, JONES D K, LIANG X, et al. Mapping Structural Connectivity Using Diffusion MRI: Challenges and Opportunities[J]. J Magn Reson Imaging, 2021, 53(6): 1666-1682. DOI: 10.1002/jmri.27188.
[15]
HATTON S N, HUYNH K H, BONILHA L, et al. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study[J]. Brain, 2020, 143(8): 2454-2473. DOI: 10.1093/brain/awaa200.
[16]
YIN Y, LIU H. Research advances in MRI for cognitive impairment in children with self-limited epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2023, 14(2): 153-157. DOI: 10.12015/issn.1674-8034.2023.02.027.
[17]
ZHOU X L, LIU H. Advances in diffusion tensor imaging-based studies of brain white matter microstructure in children with Rolandic epilepsy related to cognitive deficits[J]. Chin J Magn Reson Imaging, 2024, 15(10): 153-157. DOI: 10.12015/issn.1674-8034.2024.10.026.
[18]
SALEHI M A, MOHAMMADI S, GOURAVANI M, et al. Brain microstructural alterations of depression in Parkinson's disease: A systematic review of diffusion tensor imaging studies[J]. Hum Brain Mapp, 2022, 43(18): 5658-5680. DOI: 10.1002/hbm.26015.
[19]
VAN DEN HEUVEL M P, SPORNS O. A cross-disorder connectome landscape of brain dysconnectivity[J]. Nat Rev Neurosci, 2019, 20(7): 435-446. DOI: 10.1038/s41583-019-0177-6.
[20]
SMITH S M, VIDAURRE D, BECKMANN C F, et al. Functional connectomics from resting-state fMRI[J]. Trends Cogn Sci, 2013, 17(12): 666-682. DOI: 10.1016/j.tics.2013.09.016.
[21]
HORNYAK T, CASASSUS B. Old bonds and elemental connections[J]. Nature, 2016, 539(7629): S14-S19. DOI: 10.1038/539S14a.
[22]
JIANG Y, ZHAO K, XIA K, et al. A Novel Distributed Multitask Fuzzy Clustering Algorithm for Automatic MR Brain Image Segmentation[J/OL]. J Med Syst, 2019, 43(5): 118 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/30911929/. DOI: 10.1007/s10916-019-1245-1.
[23]
LEE M H, HACKER C D, SNYDER A Z, et al. Clustering of resting state networks[J/OL]. PLoS One, 2012, 7(7): e40370 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/22792291/. DOI: 10.1371/journal.pone.0040370.
[24]
SMITHA K A, AKHIL RAJA K, ARUN K M, et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[25]
WALTER J L, ESSMANN L, KÖNIG S U, et al. Finding landmarks - An investigation of viewing behavior during spatial navigation in VR using a graph-theoretical analysis approach[J/OL]. PLoS Comput Biol, 2022, 18(6): e1009485 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/35666726/. DOI: 10.1371/journal.pcbi.1009485.
[26]
YEO B T, KRIENEN F M, SEPULCRE J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity[J]. J Neurophysiol, 2011, 106(3): 1125-1165. DOI: 10.1152/jn.00338.2011.
[27]
XU K, WANG F, GENG B, et al. Abnormal percent amplitude of fluctuation and functional connectivity within and between networks in benign epilepsy with centrotemporal spikes[J/OL]. Epilepsy Res, 2022, 185: 106989 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/35917746/. DOI: 10.1016/j.eplepsyres.2022.106989.
[28]
HENSEL L, HOFFSTAEDTER F, CASPERS J, et al. Functional Connectivity Changes of Key Regions for Motor Initiation in Parkinson's Disease[J]. Cereb Cortex, 2019, 29(1): 383-396. DOI: 10.1093/cercor/bhy259.
[29]
BASAIA S, AGOSTA F, SARASSO E, et al. Brain Connectivity Networks Constructed Using MRI for Predicting Patterns of Atrophy Progression in Parkinson Disease[J/OL]. Radiology, 2024, 311(3): e232454 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/38916507/. DOI: 10.1148/radiol.232454.
[30]
RAN H F, ZHANG T J. Research progress of functional MRI-based neurovascular coupling in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2023, 14(10): 132-136. DOI: 10.12015/issn.1674-8034.2023.10.023.
[31]
PAUL T, SEE J W, VIJAYAKUMAR V, et al. Neurostructural changes in schizophrenia and treatment-resistance: a narrative review[J/OL]. Psychoradiology, 2024, 4: kkae015 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/39399446/. DOI: 10.1093/psyrad/kkae015.
[32]
FIELDS R D. White matter in learning, cognition and psychiatric disorders[J]. Trends Neurosci, 2008, 31(7): 361-370. DOI: 10.1016/j.tins.2008.04.001.
[33]
XU C, QI L, WANG X, et al. Functional connectomic profile correlates with effective anterior thalamic stimulation for refractory epilepsy[J]. Brain Stimul, 2023, 16(5): 1302-1309. DOI: 10.1016/j.brs.2023.08.020.
[34]
ALBANO L, AGOSTA F, BASAIA S, et al. Functional connectivity in Parkinson's disease candidates for deep brain stimulation[J/OL]. NPJ Parkinson's Disease, 2022, 8(1): 4 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/35013326/. DOI: 10.1038/s41531-021-00268-6.
[35]
ZHOU J, JIAO X, HU Q, et al. Abnormal Static and Dynamic Local Functional Connectivity in First-Episode Schizophrenia: A Resting-State fMRI Study[J]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 1023-1033. DOI: 10.1109/tnsre.2024.3368697.
[36]
JIANG Y, YAO D, ZHOU J, et al. Characteristics of disrupted topological organization in white matter functional connectome in schizophrenia[J]. Psychol Med, 2022, 52(7): 1333-1343. DOI: 10.1017/s0033291720003141.
[37]
CHEN X, ZHANG H, ZHANG L, et al. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification[J]. Hum Brain Mapp, 2017, 38(10): 5019-5034. DOI: 10.1002/hbm.23711.
[38]
RAN H, CHEN G, RAN C, et al. Altered White-Matter Functional Network in Children with Idiopathic Generalized Epilepsy[J]. Acad Radiol, 2024, 31(7): 2930-2941. DOI: 10.1016/j.acra.2023.12.043.
[39]
MARRELEC G, GIRON A. Multilevel testing of constraints induced by structural equation modeling in fMRI effective connectivity analysis: A proof of concept[J]. Magn Reson Imaging, 2024, 109: 294-303. DOI: 10.1016/j.mri.2024.01.010.
[40]
GOEBEL R, ROEBROECK A, KIM D S, et al. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping[J]. Magn Reson Imaging, 2003, 21(10): 1251-1261. DOI: 10.1016/j.mri.2003.08.026.
[41]
DING N N, AI L P, ZHANG E T. Relation between sensorimotor network dysfunction and clinical symptoms in patients with obsessive-compulsive disorder[J]. Chinese Journal of Neuromedicine, 2024, 23(3): 263-269. DOI: 10.3760/cma.j.cn115354-20240120-00052.
[42]
JAFARIAN A, ZEIDMAN P, WYKES R C, et al. Adiabatic dynamic causal modelling[J/OL]. Neuroimage, 2021, 238: 118243 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/34116151/. DOI: 10.1016/j.neuroimage.2021.118243.
[43]
REN Y, OSBORNE N, PETERSON C B, et al. Bayesian varying-effects vector autoregressive models for inference of brain connectivity networks and covariate effects in pediatric traumatic brain injury[J/OL]. Hum Brain Mapp, 2024, 45(10): e26763 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/38943369/. DOI: 10.1002/hbm.26763.
[44]
REN Y, PAN L, DU X, et al. Functional brain network mechanism of executive control dysfunction in temporal lobe epilepsy[J/OL]. BMC Neurol, 2020, 20(1): 137 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/32295523/. DOI: 10.1186/s12883-020-01711-6.
[45]
CHEN S, FANG J, AN D, et al. The focal alteration and causal connectivity in children with new-onset benign epilepsy with centrotemporal spikes[J/OL]. Sci Rep, 2018, 8(1): 5689 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/29632387/. DOI: 10.1038/s41598-018-23336-z.
[46]
VAUDANO AE, MIRANDOLA L, TALAMI F, et al. fMRI-Based Effective Connectivity in Surgical Remediable Epilepsies: A Pilot Study[J]. Brain Topogr, 2021, 34(5): 632-650. DOI: 10.1007/s10548-021-00857-x.
[47]
HAO L, SHENG Z, RUIJUN W, et al. Altered Granger causality connectivity within motor-related regions of patients with Parkinson's disease: a resting-state fMRI study[J]. Neuroradiology, 2020, 62(1): 63-69. DOI: 10.1007/s00234-019-02311-z.
[48]
REICH M M, HSU J, FERGUSON M, et al. A brain network for deep brain stimulation induced cognitive decline in Parkinson's disease[J]. Brain, 2022, 145(4): 1410-1421. DOI: 10.1093/brain/awac012.
[49]
HUANG J, JUNG J Y, NAM C S. Estimating effective connectivity in Alzheimer's disease progression: A dynamic causal modeling study[J/OL]. Front Hum Neurosci, 2022, 16: 1060936 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/36590062/. DOI: 10.3389/fnhum.2022.1060936.

PREV Evaluation of type-H vessels in bone marrow of type 1 diabetic rabbits based on ultra-small superparamagnetic nano-iron oxide enhanced MRI
NEXT Advances in structural-functional connectivity coupling analysis for understanding post-stroke functional impairments
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn