Share:
Share this content in WeChat
X
Review
Advances in structural-functional connectivity coupling analysis for understanding post-stroke functional impairments
FANG Shengjie  LIU Zaixing  WU Yanan  HONG Wenjun  XU Rong 

Cite this article as: FANG S J, LIU Z X, WU Y N, et al. Advances in structural-functional connectivity coupling analysis for understanding post-stroke functional impairments[J]. Chin J Magn Reson Imaging, 2025, 16(2): 119-123, 129. DOI:10.12015/issn.1674-8034.2025.02.019.


[Abstract] As a prevalent neurological disorder, stroke can result in a variety of functional impairments, significantly impacting patients' quality of life. Structural connectivity (SC) and functional connectivity (FC), along with the SC-FC connectivity coupling analysis, have garnered considerable attention in the research of uncovering the neural mechanisms underlying post-stroke functional impairments. This review outlines the fundamental principles of SC-FC connectivity coupling analysis by summarizing the fundamentals of SC and FC and their mechanisms, and focus on the role of SC-FC connectivity coupling analysis applied to motor dysfunction, cognitive dysfunction, and mood disorders after stroke. By evaluating the coupling relationship between SC and FC, we can systematically analyze the potential neuroimaging features of the severity of dysfunction and rehabilitation potential. In turn, it can provide novel ideas for the personalized rehabilitation strategies for post-stroke patients.
[Keywords] stroke;functional impairment;magnetic resonance imaging;structural-functional connectivity coupling;neuroimaging;neurorehabilitation

FANG Shengjie1   LIU Zaixing2   WU Yanan2   HONG Wenjun2*   XU Rong1*  

1 Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China

2 Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

Corresponding author: HONG W J, E-mail: hwj_rehab@njglyy.com XU R, E-mail: xurong3973@163.com

Conflicts of interest   None.

Received  2024-10-30
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.019
Cite this article as: FANG S J, LIU Z X, WU Y N, et al. Advances in structural-functional connectivity coupling analysis for understanding post-stroke functional impairments[J]. Chin J Magn Reson Imaging, 2025, 16(2): 119-123, 129. DOI:10.12015/issn.1674-8034.2025.02.019.

[1]
MORONE G, PICHIORRI F. Post-stroke rehabilitation: challenges and new perspectives[J/OL]. J Clin Med, 2023, 12(2): 550 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/36675486/. DOI: 10.3390/jcm12020550.
[2]
SAINI V, GUADA L, YAVAGAL D R. Global epidemiology of stroke and access to acute ischemic stroke interventions[J/OL]. Neurology, 2021, 97(20Suppl 2): S6-S16 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/34785599/. DOI: 10.1212/WNL.0000000000012781.
[3]
ZHAO Y, HUA X, REN X W, et al. Increasing burden of stroke in China: a systematic review and meta-analysis of prevalence, incidence, mortality, and case fatality[J]. Int J Stroke, 2023, 18(3): 259-267. DOI: 10.1177/17474930221135983.
[4]
STOCKBRIDGE M D, BUNKER L D, HILLIS A E. Reversing the ruin: rehabilitation, recovery, and restoration after stroke[J]. Curr Neurol Neurosci Rep, 2022, 22(11): 745-755. DOI: 10.1007/s11910-022-01231-5.
[5]
LI X, HE Y, WANG D, et al. Stroke rehabilitation: from diagnosis to therapy[J/OL]. Front Neurol, 2024, 15: 1402729 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39193145/. DOI: 10.3389/fneur.2024.1402729.
[6]
STINEAR C M, LANG C E, ZEILER S, et al. Advances and challenges in stroke rehabilitation[J]. Lancet Neurol, 2020, 19(4): 348-360. DOI: 10.1016/S1474-4422(19)30415-6.
[7]
ZHOU J, LIU F, ZHOU M C, et al. Functional status and its related factors among stroke survivors in rehabilitation departments of hospitals in Shenzhen, China: a cross-sectional study[J/OL]. BMC Neurol, 2022, 22(1): 173 [2024-11-13]. https://pubmed.ncbi.nlm.nih.gov/35546388/. DOI: 10.1186/s12883-022-02696-0.
[8]
TU W J, WANG L D, YAN F, et al. China stroke surveillance report 2021[J/OL]. Mil Med Res, 2023, 10(1): 33 [2024-11-13]. https://pubmed.ncbi.nlm.nih.gov/37468952/. DOI: 10.1186/s40779-023-00463-x.
[9]
YU Q R, YIN D Z, KAISER M, et al. Pathway-specific mediation effect between structure, function, and motor impairment after subcortical stroke[J/OL]. Neurology, 2023, 100(6): e616-e626 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/36307219/. DOI: 10.1212/WNL.0000000000201495.
[10]
TAVAZZI E, BERGSLAND N, PIRASTRU A, et al. MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: a systematic review[J/OL]. Neuroimage Clin, 2022, 33: 102931 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/34995869/. DOI: 10.1016/j.nicl.2021.102931.
[11]
WARREN A, RAGUZ M, CHUDY D, et al. 439 optimal targets, connectivity, and tissue integrity for deep brain stimulation in patients with disorders of consciousness[J]. Neurosurgery, 2024, 70(Supplement_1): 133-134. DOI: 10.1227/neu.0000000000002809_439.
[12]
JEURISSEN B, DESCOTEAUX M, MORI S, et al. Diffusion MRI fiber tractography of the brain[J/OL]. NMR Biomed, 2019, 32(4): e3785 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/28945294/. DOI: 10.1002/nbm.3785.
[13]
GUGGISBERG A G, KOCH P J, HUMMEL F C, et al. Brain networks and their relevance for stroke rehabilitation[J]. Clin Neurophysiol, 2019, 130(7): 1098-1124. DOI: 10.1016/j.clinph.2019.04.004.
[14]
ZHANG F, DADUCCI A, HE Y, et al. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: a review[J/OL]. Neuroimage, 2022, 249: 118870 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/34979249/. DOI: 10.1016/j.neuroimage.2021.118870.
[15]
ZHANG J, CORTESE R, DE STEFANO N, et al. Structural and functional connectivity substrates of cognitive impairment in multiple sclerosis[J/OL]. Front Neurol, 2021, 12: 671894 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/34305785/. DOI: 10.3389/fneur.2021.671894.
[16]
GONZALEZ-CASTILLO J, KAM J W Y, HOY C W, et al. How to interpret resting-state fMRI: ask your participants[J]. J Neurosci, 2021, 41(6): 1130-1141. DOI: 10.1523/JNEUROSCI.1786-20.2020.
[17]
SUN C, LIU X H, BAO C P, et al. Advanced non-invasive MRI of neuroplasticity in ischemic stroke: Techniques and applications[J/OL]. Life Sci, 2020, 261: 118365 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/32871181/. DOI: 10.1016/j.lfs.2020.118365.
[18]
LI M, GAO Y, ANDERSON A W, et al. Dynamic variations of resting-state BOLD signal spectra in white matter[J/OL]. Neuroimage, 2022, 250: 118972 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/35131432/. DOI: 10.1016/j.neuroimage.2022.118972.
[19]
TEMMERMAN J, ENGELBORGHS S, BJERKE M, et al. Cerebrospinal fluid inflammatory biomarkers for disease progression in Alzheimer's disease and multiple sclerosis: a systematic review[J/OL]. Front Immunol, 2023, 14: 1162340 [2024-10-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10374015/. DOI: 10.3389/fimmu.2023.1162340.
[20]
MA Z Z, WU J J, CAO Z, et al. Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients[J/OL]. J NeuroEngineering Rehabil, 2024, 21(1): 91 [2024-10-13]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11134735/. DOI: 10.1186/s12984-024-01387-w.
[21]
ZHAO B, LI T, YANG Y, et al. Common genetic variation influencing human white matter microstructure[J/OL]. Science, 2021, 372(6548): eabf3736 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/34140357/. DOI: 10.1126/science.abf3736.
[22]
HANSEN J Y, SHAFIEI G, MARKELLO R D, et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex[J]. Nat Neurosci, 2022, 25(11): 1569-1581. DOI: 10.1038/s41593-022-01186-3.
[23]
GORDON E M, CHAUVIN R J, VAN A N, et al. A somato-cognitive action network alternates with effector regions in motor cortex[J]. Nature, 2023, 617(7960): 351-359. DOI: 10.1038/s41586-023-05964-2.
[24]
FOTIADIS P, PARKES L, DAVIS K A, et al. Structure-function coupling in macroscale human brain networks[J]. Nat Rev Neurosci, 2024, 25(10): 688-704. DOI: 10.1038/s41583-024-00846-6.
[25]
HEARNE L J, LIN H Y, SANZ-LEON P, et al. ADHD symptoms map onto noise-driven structure-function decoupling between hub and peripheral brain regions[J]. Mol Psychiatry, 2021, 26(8): 4036-4045. DOI: 10.1038/s41380-019-0554-6.
[26]
KULIK S D, NAUTA I M, TEWARIE P, et al. Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis[J]. Netw Neurosci, 2022, 6(2): 339-356. DOI: 10.1162/netn_a_00226.
[27]
ZARKALI A, MCCOLGAN P, LEYLAND L A, et al. Organisational and neuromodulatory underpinnings of structural-functional connectivity decoupling in patients with Parkinson's disease[J/OL]. Commun Biol, 2021, 4(1): 86 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/33469150/. DOI: 10.1038/s42003-020-01622-9.
[28]
LIU X Y, QIU S T, WANG X Y, et al. Aberrant dynamic Functional-Structural connectivity coupling of Large-scale brain networks in poststroke motor dysfunction[J/OL]. Neuroimage Clin, 2023, 37: 103332 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/36708666/. DOI: 10.1016/j.nicl.2023.103332.
[29]
CHEN H Y, GENG W, SHANG S A, et al. Alterations of brain network topology and structural connectivity-functional connectivity coupling in capsular versus pontine stroke[J]. Eur J Neurol, 2021, 28(6): 1967-1976. DOI: 10.1111/ene.14794.
[30]
KALINOSKY B T, BERRIOS BARILLAS R, SCHMIT B D. Structurofunctional resting-state networks correlate with motor function in chronic stroke[J/OL]. Neuroimage Clin, 2017, 16: 610-623 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/28971011/. DOI: 10.1016/j.nicl.2017.07.002.
[31]
MARTÍ-JUAN G, SASTRE-GARRIGA J, MARTINEZ-HERAS E, et al. Using The Virtual Brain to study the relationship between structural and functional connectivity in patients with multiple sclerosis: a multicenter study[J]. Cereb Cortex, 2023, 33(12): 7322-7334. DOI: 10.1093/cercor/bhad041.
[32]
SUN Y B, WANG P, ZHAO K, et al. Structure-function coupling reveals the brain hierarchical structure dysfunction in Alzheimer's disease: a multicenter study[J]. Alzheimers Dement, 2024, 20(9): 6305-6315. DOI: 10.1002/alz.14123.
[33]
QING P, ZHANG X D, LIU Q, et al. Structure-function coupling in white matter uncovers the hypoconnectivity in autism spectrum disorder[J/OL]. Mol Autism, 2024, 15(1): 43 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39367506/. DOI: 10.1186/s13229-024-00620-6.
[34]
ZHANG X, SUO X L, YANG X, et al. Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder[J/OL]. Transl Psychiatry, 2022, 12(1): 26 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/35064097/. DOI: 10.1038/s41398-022-01791-7.
[35]
LONG H X, CHEN Z H, XU X L, et al. Elucidating genetic and molecular basis of altered higher-order brain structure-function coupling in major depressive disorder[J/OL]. Neuroimage, 2024, 297: 120722 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/38971483/. DOI: 10.1016/j.neuroimage.2024.120722.
[36]
MANDEVILLE E T, AYATA C, ZHENG Y, et al. Translational MR neuroimaging of stroke and recovery[J]. Transl Stroke Res, 2017, 8(1): 22-32. DOI: 10.1007/s12975-016-0497-z.
[37]
VAN DEN HEUVEL M P, HULSHOFF POL H E. Exploring the brain network: a review on resting-state fMRI functional connectivity[J]. Eur Neuropsychopharmacol, 2010, 20(8): 519-534. DOI: 10.1016/j.euroneuro.2010.03.008.
[38]
WANG J, KHOSROWABADI R, NG K K, et al. Alterations in brain network topology and structural-functional connectome coupling relate to cognitive impairment[J/OL]. Front Aging Neurosci, 2018, 10: 404 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/30618711/. DOI: 10.3389/fnagi.2018.00404.
[39]
MA J W, LIU F, YANG B B, et al. Selective aberrant functional-structural coupling of multiscale brain networks in subcortical vascular mild cognitive impairment[J]. Neurosci Bull, 2021, 37(3): 287-297. DOI: 10.1007/s12264-020-00580-w.
[40]
RAFFIN E, HUMMEL F C. Restoring motor functions after stroke: multiple approaches and opportunities[J]. Neuroscientist, 2018, 24(4): 400-416. DOI: 10.1177/1073858417737486.
[41]
SURI R, RODRIGUEZ-PORCEL F, DONOHUE K, et al. Post-stroke movement disorders: the clinical, neuroanatomic, and demographic portrait of 284 published cases[J]. J Stroke Cerebrovasc Dis, 2018, 27(9): 2388-2397. DOI: 10.1016/j.jstrokecerebrovasdis.2018.04.028.
[42]
ZHANG J N, ZHANG Y, WANG L, et al. Disrupted structural and functional connectivity networks in ischemic stroke patients[J/OL]. Neuroscience, 2017, 364: 212-225 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/28918259/. DOI: 10.1016/j.neuroscience.2017.09.009.
[43]
RAJESH A, SEIDER N A, NEWBOLD D J, et al. Structure-function coupling in highly sampled individual brains[J/OL]. Cereb Cortex, 2024, 34(9): bhae361 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39277800/. DOI: 10.1093/cercor/bhae361.
[44]
ZOU T, CHEN C, CHEN H F, et al. Structural-functional connectivity decoupling in multiscale brain networks in Parkinson's disease[J/OL]. BMC Neurosci, 2024, 25(1): 78 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39725901/. DOI: 10.1186/s12868-024-00918-4.
[45]
ROST N S, BRODTMANN A, PASE M P, et al. Post-stroke cognitive impairment and dementia[J]. Circ Res, 2022, 130(8): 1252-1271. DOI: 10.1161/CIRCRESAHA.122.319951.
[46]
EL HUSSEINI N, KATZAN I L, ROST N S, et al. Cognitive impairment after ischemic and hemorrhagic stroke: a scientific statement from the American heart association/American stroke association[J/OL]. Stroke, 2023, 54(6): e272-e291 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/37125534/. DOI: 10.1161/STR.0000000000000430.
[47]
ZHU H, ZUO L J, ZHU W L, et al. The distinct disrupted plasticity in structural and functional network in mild stroke with basal Ganglia region infarcts[J]. Brain Imaging Behav, 2022, 16(5): 2199-2219. DOI: 10.1007/s11682-022-00689-8.
[48]
LIU C, ZUO L J, LI Z X, et al. Brain structural-functional coupling mechanism in mild subcortical stroke and its relationship with cognition[J/OL]. Brain Res, 2024, 1845: 149167 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39153590/. DOI: 10.1016/j.brainres.2024.149167.
[49]
KIM J S.Management of post-stroke mood and emotional disturbances[J]. Expert Rev Neurother, 2017, 17(12): 1179-1188. DOI: 10.1080/14737175.2017.1395281.
[50]
VICENTINI J E, WEILER M, ALMEIDA S R M, et al. Depression and anxiety symptoms are associated to disruption of default mode network in subacute ischemic stroke[J]. Brain Imaging Behav, 2017, 11(6): 1571-1580. DOI: 10.1007/s11682-016-9605-7.
[51]
OESTREICH L K L, WRIGHT P, O'SULLIVAN M J.Hyperconnectivity and altered interactions of a nucleus accumbens network in post-stroke depression[J/OL]. Brain Commun, 2022, 4(6): fcac281 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/36415661/. DOI: 10.1093/braincomms/fcac281.
[52]
ZHANG X F, SHI Y, FAN T, et al. Analysis of correlation between white matter changes and functional responses in post-stroke depression[J/OL]. Front Aging Neurosci, 2021, 13: 728622 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/34707489/. DOI: 10.3389/fnagi.2021.728622.
[53]
HE Y Z, ZHAO B R, LIU Z H, et al. Individualized identification value of stress-related network structural-functional properties and HPA axis reactivity for subthreshold depression[J/OL]. Transl Psychiatry, 2024, 14(1): 501 [2024-10-13]. https://pubmed.ncbi.nlm.nih.gov/39715743/. DOI: 10.1038/s41398-024-03210-5.

PREV Research progress of fMRI in brain network remodeling and brain plasticity during stroke recovery
NEXT Progress in multimodal MRI and imaging genetics in Parkinson,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn