Share:
Share this content in WeChat
X
Review
Progress in multimodal MRI and imaging genetics in Parkinson's disease
YU Qian'e  CUI Jiaqi  ZHANG Tijiang 

Cite this article as: YU Q E, CUI J Q, ZHANG T J. Progress in multimodal MRI and imaging genetics in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(2): 124-129. DOI:10.12015/issn.1674-8034.2025.02.020.


[Abstract] Parkinson's disease (PD) is a complex chronic progressive neurodegenerative disorder, with genetic factors playing a significant role in its onset and progression. MRI is a non-invasive technique used to assess changes in brain structure and function. Imaging genetics combining genetic information with brain imaging data may explore the relationship between genes and brain phenotypes. This article reviews the research progress of multimodal MRI and imaging genetics in PD, aiming to provide neurobiological evidence for understanding the pathophysiological mechanisms, early diagnosis, personalized treatment and prognosis of PD.
[Keywords] Parkinson's disease;magnetic resonance imaging;genetic expression;image genetics

YU Qian'e   CUI Jiaqi   ZHANG Tijiang*  

Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China

Corresponding author: ZHANG T J, E-mail: tijzhang@163.com

Conflicts of interest   None.

Received  2024-11-05
Accepted  2025-02-14
DOI: 10.12015/issn.1674-8034.2025.02.020
Cite this article as: YU Q E, CUI J Q, ZHANG T J. Progress in multimodal MRI and imaging genetics in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(2): 124-129. DOI:10.12015/issn.1674-8034.2025.02.020.

[1]
BAO Y, YA Y, LIU J, et al. Regional homogeneity and functional connectivity of freezing of gait conversion in Parkinson's disease[J/OL]. Front Aging Neurosci, 2023, 15: 1179752 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/37502425/. DOI: 10.3389/fnagi.2023.1179752.
[2]
TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-397. DOI: 10.1016/S1474-4422(21)00030-2.
[3]
BLOEM B R, OKUN M S, KLEIN C. Parkinson's disease[J]. Lancet, 2021, 397(10291): 2284-2303. DOI: 10.1016/S0140-6736(21)00218-X.
[4]
ARMSTRONG M J, OKUN M S. Diagnosis and treatment of parkinson disease: a review[J]. JAMA, 2020, 323(6): 548-560. DOI: 10.1001/jama.2019.22360.
[5]
CAREY G, GÖRMEZOĞLU M, DE JONG J J A. A. Neuroimaging of anxiety in Parkinson's disease: a systematic review[J]. Mov Disord, 2021, 36(2): 327-339. DOI: 10.1002/mds.28404.
[6]
ARNATKEVICIUTE A, FULCHER B D, BELLGROVE M A, et al. Imaging transcriptomics of brain disorders[J/OL]. Biological Psychiatry Global Open Science, 2021, 2(4): 319 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/36324650/. DOI: 10.1016/j.bpsgos.2021.10.002.
[7]
MITCHELL T, LEHÉRICY S, CHIU S Y, et al. Emerging neuroimaging biomarkers across disease stage in parkinson disease: a review[J]. JAMA Neurol, 2021, 78(10): 1262-1272. DOI: 10.1001/jamaneurol.2021.1312.
[8]
HALLER S, HAACKE E M, THURNHER M M, et al. Susceptibility-weighted imaging: technical essentials and clinical neurologic applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
[9]
BLAZEJEWSKA A I, SCHWARZ S T, PITIOT A, et al. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI[J]. Neurology, 2013, 81(6): 534-540. DOI: 10.1212/WNL.0b013e31829e6fd2.
[10]
CHAKRABORTY S, AICH S, KIM H C. Detection of Parkinson's disease from 3T T1 weighted MRI scans using 3D convolutional neural network[J/OL]. Diagnostics (Basel), 2020, 10(6): 402 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/32545609/. DOI: 10.3390/diagnostics10060402.
[11]
LI R, ZOU T, WANG X, WANG H, et al. Basal ganglia atrophy-associated causal structural network degeneration in Parkinson's disease[J]. Hum Brain Mapp, 2922, 43(3): 1145-1156. DOI: 10.1002/hbm.25715.
[12]
KHAN A R, HIEBERT N M, VO A, et al. Biomarkers of Parkinson's disease: striatal sub-regional structural morphometry and diffusion MRI[J]. Neuroimage Clin, 2019, 21: 101597 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/30472168/. DOI: 10.1016/j.nicl.2018.11.007.
[13]
ZHU Y, YANG B, ZHOU C, et al. Cortical atrophy is associated with cognitive impairment in Parkinson's disease: a combined analysis of cortical thickness and functional connectivity[J]. Brain Imaging Behav, 2022, 16(6): 2586-2600. DOI: 10.1007/s11682-022-00714-w.
[14]
MAK E, SU L, WILLIAMS G B, et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson's disease: ICICLE-PD study[J]. Brain, 2015, 138(Pt 10): 2974-2986. DOI: 10.1093/brain/awv211.
[15]
OLTRA J, URIBE C, SEGURA B, et al. Brain atrophy pattern in de novo Parkinson's disease with probable rbd associated with cognitive impairment[J]. NPJ Parkinsons Dis, 2022, 8(1): 60 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/35610256/. DOI: 10.1038/s41531-022-00326-7.
[16]
ZUO C, SUO X, LAN H, et al. Global alterations of whole brain structural connectome in Parkinson's disease: a meta-analysis[J]. Neuropsychol Rev, 2023, 33(4): 783-802. DOI: 10.1007/s11065-022-09559-y.
[17]
ATKINSON-CLEMENT C, PINTO S, Eusebio A, et al. Diffusion tensor imaging in Parkinson's disease: review and meta-analysis[J]. Neuroimage Clin, 2017, 16: 98-110. DOI: 10.1016/j.nicl.2017.07.011.
[18]
OWENS-WALTON C, NIR T M, AL-BACHARI S, et al. A worldwide study of white matter microstructural alterations in people living with Parkinson's disease[J]. NPJ Parkinsons Dis, 2024, 10(1): 151 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/39128907/. DOI: 10.1038/s41531-024-00758-3.
[19]
TAYLOR K I, SAMBATARO F, BOESS F, et al. Progressive decline in gray and white matter integrity in de novo Parkinson's disease: an analysis of longitudinal parkinson progression markers initiative diffusion tensor imaging data[J/OL]. Front Aging Neurosci, 2018, 10: 318 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/30349475/. DOI: 10.3389/fnagi.2018.00318.
[20]
MORRIS H R, SPILLANTINI M G, SUE C M, et al. The pathogenesis of Parkinson's disease[J]. Lancet, 2024, 403(10423): 293-304. DOI: 10.1016/S0140-6736(23)01478-2.
[21]
STEWART S A, PIMER L, FISK J D, et al. Olfactory function and diffusion tensor imaging as markers of mild cognitive impairment in early stages of Parkinson's disease[J]. Clin EEG Neurosci, 2023, 54(1): 91-97. DOI: 10.1177/15500594211058263.
[22]
QUATTRONE A, CALOMINO C, SARICA A, et al. Neuroimaging correlates of postural instability in Parkinson's disease[J]. J Neurol, 2024, 271(4): 1910-1920. DOI: 10.1007/s00415-023-12136-9.
[23]
FANG Z R, CHEN Q Y, YE L, et al. Clinical value of SyMRI relaxation quantitative analysis and QSM in predicting microstructural changes of substantia nigra in early Parkinson's disease patients[J]. Chin J Magn Reson Imaging, 2024, 15(8): 110-116, 138. DOI: 10.12015/issn.1674-8034.2024.08.017.
[24]
JIN J, SU D, ZHANG J, et al. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies[J/OL]. Chin Med J (Engl), 2024 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/38809051/. DOI: 10.1097/CM9.0000000000003167.
[25]
ZANG Z, SONG T, LI J, et al. Modulation effect of substantia nigra iron deposition and functional connectivity on putamen glucose metabolism in Parkinson's disease[J]. Hum Brain Mapp, 2022, 43(12): 3735-3744. DOI: 10.1002/hbm.25880.
[26]
YAN Y, WANG Z, WEI W, et al. Correlation of brain iron deposition and freezing of gait in Parkinson's disease: a cross-sectional study[J]. Quant Imaging Med Surg, 2023, 13(12): 7961-7972. DOI: 10.21037/qims-23-267.
[27]
THOMAS G E C, LEYLAND L A, SCHRAG A E, et al. Brain iron deposition is linked with cognitive severity in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2020, 91(4): 418-425. DOI: 10.1136/jnnp-2019-322042.
[28]
TIAN Y, GENG S, LIU T, et al. Unveiling MRI markers for Parkinson's disease: gabaergic dysfunction and cortical changes[J/OL]. Neuroimage Clin, 2024, 43: 103661 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/39241547/. DOI: 10.1016/j.nicl.2024.103661.
[29]
LIU X, LI Y, MO Y, et al. GABAergic imbalance in Parkinson's disease-related depression determined with mega-press[J/OL]. Neuroimage Clin, 2023, 43: 103641 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/39032208/. DOI: 10.1016/j.nicl.2024.103641.
[30]
CHASSAIN C, CLADIERE A, TSOUTSOS C, et al. Glutamate cycle changes in the putamen of patients with de novo Parkinson's disease using 1H MRS[J]. Parkinsonism Relat Disord, 2022, 99: 65-72. DOI: 10.1016/j.parkreldis.2022.05.007.
[31]
OPHEY A, FARRHER E, PAGEL N, et al. Visuo-spatial processing is linked to cortical glutamate dynamics in Parkinson's disease - a 7-T functional magnetic resonance spectroscopy study[J]. Eur J Neurol, 2023, 30(7): 2106-2111. DOI: 10.1111/ene.15818.
[32]
WANG X, WEI W, BAI Y, et al. Intrinsic brain activity alterations in patients with Parkinson's disease[J/OL]. Neurosci Lett, 2023, 809: 137298 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/37196973/. DOI: 10.1016/j.neulet.2023.137298.
[33]
LAN Y, LIU X, YIN C, et al. Resting-state functional magnetic resonance imaging study comparing tremor-dominant and postural instability/gait difficulty subtypes of Parkinson's disease[J]. Radiol Med, 2023, 128(9): 1138-1147. DOI: 10.1007/s11547-023-01673-y.
[34]
LI K, TIAN Y, CHEN H, et al. Temporal dynamic alterations of regional homogeneity in Parkinson's disease: a resting-state fMRI study[J/OL]. Biomolecules, 2023, 13(6): 888 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/37371468/. DOI: 10.3390/biom13060888.
[35]
FILIPPI M, ELISABETTA S, PIRAMIDE N, et al. Functional MRI in idiopathic Parkinson's disease[J]. Int Rev Neurobiol, 2018, 141: 439-467. DOI: 10.1016/bs.irn.2018.08.005.
[36]
TESSITORE A, CIRILLO M, DE MICCO R. Functional connectivity signatures of Parkinson's disease[J]. J Parkinsons Dis, 2019, 9(4): 637-652. DOI: 10.3233/JPD-191592.
[37]
DE MICCO R, AGOSTA F, BASAIA S, et al. Functional connectomics and disease progression in drug-naïve Parkinson's disease patients[J]. Mov Disord, 2021, 36(7): 1603-1616. DOI: 10.1002/mds.28541.
[38]
ZARIFKAR P, KIM J, LA C, et al. Cognitive impairment in Parkinson's disease is associated with default mode network subsystem connectivity and cerebrospinal fluid aβ[J]. Parkinsonism Relat Disord, 2021, 83: 71-78. DOI: 10.1016/j.parkreldis.2021.01.002.
[39]
WANG J, SUN L, CHEN L, et al. Common and distinct roles of amygdala subregional functional connectivity in non-motor symptoms of Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2023, 9(1): 28 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/36806219/. DOI: 10.1038/s41531-023-00469-1.
[40]
BERGAMINO M, KEELING E G, RAY N J, et al. Structural connectivity and brain network analyses in Parkinson's disease: a cross-sectional and longitudinal study[J/OL]. Front Neurol, 2023, 14: 1137780 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/37034088/. DOI: 10.3389/fneur.2023.1137780.
[41]
ZHANG X, ZHOU Y, LU Z, et al. Multi-level graph neural network with sparsity pooling for recognizing Parkinson's disease[J]. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 4459-4469. DOI: 10.1109/TNSRE.2023.3330643.
[42]
ZENG W, FAN W, KONG X, et al. Altered intra- and inter-network connectivity in drug-naïve patients with early Parkinson's disease[J/OL]. Front Aging Neurosci, 2022, 14: 783634 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/35237144/. DOI: 10.3389/fnagi.2022.783634.
[43]
JONKMAN L E, FATHY Y Y, BERENDSE H W, et al. DOI: . Structural network topology and microstructural alterations of the anterior insula associate with cognitive and affective impairment in Parkinson's disease[J/OL]. Sci Rep, 2021, 11(1): 16021 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/34362996/. DOI: 10.1038/s41598-021-95638-8.
[44]
STEIDEL K, RUPPERT M C, PALAGHIA I, et al. Dopaminergic pathways and resting-state functional connectivity in Parkinson's disease with freezing of gait[J/OL]. Neuroimage Clin, 2021, 32: 102899 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/34362996/. DOI: 10.1016/j.nicl.2021.102899.
[45]
ARNATKEVICIUTE A, MARKELLO R D, FULCHER B D, et al. DOI: . Toward best practices for imaging transcriptomics of the human brain[J]. Biological Psychiatry, 2023, 93(5): 391-404. DOI: 10.1016/j.biopsych.2022.10.016.
[46]
KEO A, DZYUBACHYK O, VAN DER GROND J, et al. Transcriptomic signatures associated with regional cortical thickness changes in Parkinson's disease[J]. Front Neurosci, 2021, 15: 733501 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/34658772/. DOI: 10.3389/fnins.2021.733501.
[47]
KEO A, DZYUBACHYK O, VAN DER GROND J, et al. Cingulate networks associated with gray matter loss in Parkinson's disease show high expression of cholinergic genes in the healthy brain[J]. Eur J Neurosci, 2021, 53(11): 3727-3739. DOI: 10.1111/ejn.15216.
[48]
MONZEL A S, ENRÍQUEZ J A, PICARD M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction[J]. Nat Metab, 2023, 5(4): 546-562. DOI: 10.1038/s42255-023-00783-1.
[49]
THOMAS G E C, ZARKALI A, RYTEN M, et al. Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson's disease[J]. Brain, 2021, 144(6): 1787-1798. DOI: 10.1093/brain/awab084.
[50]
ZARKALI A, LUPPI A I, STAMATAKIS E A, et al. DOI: . Changes in dynamic transitions between integrated and segregated states underlie visual hallucinations in Parkinson's disease[J/OL]. Commun Biol, 2022, 5: 928 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/36075964/. DOI: 10.1038/s42003-022-03903-x.
[51]
TREMBLAY C, RAHAYEL S, VO A, et al. Brain atrophy progression in Parkinson's disease is shaped by connectivity and local vulnerability[J/OL]. Brain Commun, 2021, 3(4): fcab269 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/34859216/. DOI: 10.1093/braincomms/fcab269.
[52]
ZARKALI A, MCCOLGAN P, RYTEN M, et al. Differences in network controllability and regional gene expression underlie hallucinations in Parkinson's disease[J]. Brain, 2020, 143(11): 3435-3448. DOI: 10.1093/brain/awaa270.
[53]
FREEZE B, PANDYA S, ZEIGHAMI Y, et al. Regional transcriptional architecture of Parkinson's disease pathogenesis and network spread[J]. Brain, 2019, 142(10): 3072-3085. DOI: 10.1093/brain/awz223.
[54]
WANG Y, XIAO Y, XING Y, et al. Morphometric similarity differences in drug-naive Parkinson's disease correlate with transcriptomic signatures[J/OL]. CNS Neurosci Ther, 2024, 30(3): e14680 [2024-11-05]. https://pubmed.ncbi.nlm.nih.gov/38529533/. DOI: 10.1111/cns.14680.

PREV Advances in structural-functional connectivity coupling analysis for understanding post-stroke functional impairments
NEXT Research progress of perfusion imaging in the treatment and prognosis assessment of ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn