Share:
Share this content in WeChat
X
Review
Research progress of perfusion imaging in the treatment and prognosis assessment of ischemic stroke
QU Yichun  WANG Xiaochun 

Cite this article as: QU Y C, WANG X C. Research progress of perfusion imaging in the treatment and prognosis assessment of ischemic stroke[J]. Chin J Magn Reson Imaging, 2025, 16(2): 130-134. DOI:10.12015/issn.1674-8034.2025.02.021.


[Abstract] Ischemic stroke is an acute cerebrovascular disease caused by various causes of brain blood supply disorders, resulting in brain tissue ischemia, hypoxic necrosis, and then corresponding neurological impairment symptoms. Morbidity, mortality and disability are high, and treatment options are limited. Perfusion imaging is an imaging method based on flow effect to observe molecular microscopic motion, which can measure the blood perfusion and microcirculation of local brain tissue, provide tissue hemodynamic information and analyze brain tissue activity, and has important reference value for clinical diagnosis and treatment. This paper systematically summarizes the application progress of various perfusion imaging technologies in ischemic stroke, fills the shortcomings of comprehensive analysis of these technologies in current studies, and provides the advantages and limitations of different perfusion imaging technologies for clinicians to help them achieve accurate treatment in patients with ischemic stroke.
[Keywords] ischemic stroke;ischemic cerebrovascular disease;magnetic resonance imaging;perfusion imaging;treatment;prognosis

QU Yichun   WANG Xiaochun*  

College of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: WANG X C, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

Received  2024-10-24
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.021
Cite this article as: QU Y C, WANG X C. Research progress of perfusion imaging in the treatment and prognosis assessment of ischemic stroke[J]. Chin J Magn Reson Imaging, 2025, 16(2): 130-134. DOI:10.12015/issn.1674-8034.2025.02.021.

[1]
TU W J, WANG L D, YAN F, et al. China stroke surveillance report 2021[J/OL]. Mil Med Res, 2023, 10(1): 33 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/37468952/. DOI: 10.1186/s40779-023-00463-x.
[2]
DEMEESTERE J, WOUTERS A, CHRISTENSEN S, et al. Review of perfusion imaging in acute ischemic stroke: from time to tissue[J]. Stroke, 2020, 51(3): 1017-1024. DOI: 10.1161/STROKEAHA.119.028337.
[3]
REGENHARDT R W, POTTER C A, HUANG S S, et al. Advanced imaging for acute stroke treatment selection: CT, CTA, CT perfusion, and MR imaging[J]. Radiol Clin North Am, 2023, 61(3): 445-456. DOI: 10.1016/j.rcl.2023.01.003.
[4]
HATAMI N, CHO T H, MECHTOUFF L, et al. CNN-LSTM based multimodal MRI and clinical data fusion for predicting functional outcome in stroke patients[J/OL]. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 3430-3434 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/36085793/. DOI: 10.1109/EMBC48229.2022.9871735.
[5]
FANG H, HE G C, CHENG Y S, et al. Advances in cerebral perfusion imaging techniques in acute ischemic stroke[J]. J Clin Ultrasound, 2022, 50(8): 1202-1211. DOI: 10.1002/jcu.23277.
[6]
NOGUEIRA R G, JADHAV A P, HAUSSEN D C, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct[J]. N Engl J Med, 2018, 378(1): 11-21. DOI: 10.1056/NEJMoa1706442.
[7]
KATYAL A, BHASKAR S. CTP-guided reperfusion therapy in acute ischemic stroke: a meta-analysis[J]. Acta Neurol Scand, 2021, 143(4): 355-366. DOI: 10.1111/ane.13374.
[8]
VÁCLAVÍK D, VOLNÝ O, CIMFLOVÁ P, et al. The importance of CT perfusion for diagnosis and treatment of ischemic stroke in anterior circulation[J/OL]. J Integr Neurosci, 2022, 21(3): 92 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/35633173/. DOI: 10.31083/j.jin2103092.
[9]
SIDDIQI A Z, WADHWA A. Treatment of acute stroke: current practices and future horizons[J/OL]. Cardiovasc Revasc Med, 2023, 49: 56-65 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/36443221/. DOI: 10.1016/j.carrev.2022.11.012.
[10]
ZHOU Y, HE Y D, YAN S Q, et al. Reperfusion injury is associated with poor outcome in patients with recanalization after thrombectomy[J]. Stroke, 2023, 54(1): 96-104. DOI: 10.1161/STROKEAHA.122.039337.
[11]
XU J, DAI F Y, WANG B D, et al. Predictive value of CT perfusion in hemorrhagic transformation after acute ischemic stroke: a systematic review and meta-analysis[J/OL]. Brain Sci, 2023, 13(1): 156 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/36672136/. DOI: 10.3390/brainsci13010156.
[12]
JHOU H J, YANG L Y, CHEN P H, et al. Thrombectomy for patients with a large infarct core: a study-level meta-analysis with trial sequential analysis[J/OL]. Ther Adv Neurol Disord, 2024, 17: 17562864241285552 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/39385996/. DOI: 10.1177/17562864241285552.
[13]
FU M, YANG J, DONG X N, et al. Association of critical hypoperfusion biomarkers on CT with futile recanalization and poor outcome after mechanical thrombectomy in acute ischemic stroke[J/OL]. BMC Neurol, 2024, 24(1): 406 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/39434001/. DOI: 10.1186/s12883-024-03911-w.
[14]
FAINARDI E, BUSTO G, MOROTTI A. Automated advanced imaging in acute ischemic stroke. Certainties and uncertainties[J/OL]. Eur J Radiol Open, 2023, 11: 100524 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/37771657/. DOI: 10.1016/j.ejro.2023.100524.
[15]
KATYAL A, CALIC Z, KILLINGSWORTH M, et al. Diagnostic and prognostic utility of computed tomography perfusion imaging in posterior circulation acute ischemic stroke: a systematic review and meta-analysis[J]. Eur J Neurol, 2021, 28(8): 2657-2668. DOI: 10.1111/ene.14934.
[16]
ELSHERIF S, LEGERE B, MOHAMED A, et al. Beyond conventional imaging: a systematic review and meta-analysis assessing the impact of computed tomography perfusion on ischemic stroke outcomes in the late window[J/OL]. Int J Stroke, 2024: 17474930241292915 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/39375904/. DOI: 10.1177/17474930241292915.
[17]
RAVULA S, PATIL C, KUMAR KS P, et al. A study to evaluate the role of three-dimensional pseudo-continuous arterial spin labelling in acute ischemic stroke[J/OL]. Cureus, 2023, 15(8): e44030 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/37746491/. DOI: 10.7759/cureus.44030.
[18]
YOSHIE T, YU Y, JIANG H, et al. Perfusion parameter thresholds that discriminate ischemic core vary with time from onset in acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2020, 41(10): 1809-1815. DOI: 10.3174/ajnr.A6744.
[19]
ALAYA I BEN, LIMAM H, KRAIEM T. Applications of artificial intelligence for DWI and PWI data processing in acute ischemic stroke: Current practices and future directions[J/OL]. Clin Imaging, 2022, 81: 79-86 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34649081/. DOI: 10.1016/j.clinimag.2021.09.015.
[20]
LU J X, YASSIN M M, GUO Y W, et al. Ischemic perfusion radiomics: assessing neurological impairment in acute ischemic stroke[J/OL]. Front Neurol, 2024, 15: 1441055 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/39081344/. DOI: 10.3389/fneur.2024.1441055.
[21]
LEE S, PARK D W, KIM T Y, et al. A novel visual ranking system based on arterial spin labeling perfusion imaging for evaluating perfusion disturbance in patients with ischemic stroke[J/OL]. PLoS One, 2020, 15(1): e0227747 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/31978097/. DOI: 10.1371/journal.pone.0227747.
[22]
GUO Y W, YANG Y J, CAO F Q, et al. Radiomics features of DSC-PWI in time dimension may provide a new chance to identify ischemic stroke[J/OL]. Front Neurol, 2022, 13: 889090 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/36408497/. DOI: 10.3389/fneur.2022.889090.
[23]
CAMPBELL B C V, MA H, RINGLEB P A, et al. Extending thrombolysis to 4·5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data[J]. Lancet, 2019, 394(10193): 139-147. DOI: 10.1016/S0140-6736(19)31053-0.
[24]
DONALDSON J, WINDERS J, ALAMRI Y, et al. The changing landscape of intravenous thrombolysis for acute ischaemic stroke[J/OL]. J Clin Med, 2024, 13(19): 5826 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/39407885/. DOI: 10.3390/jcm13195826.
[25]
AMUKOTUWA S A, FISCHBEIN N J, ALBERS G W, et al. Comparison of T2*GRE and DSC-PWI for hemorrhage detection in acute ischemic stroke patients: Pooled analysis of the EPITHET, DEFUSE 2, and SENSE 3 stroke studies[J]. Int J Stroke, 2020, 15(2): 216-225. DOI: 10.1177/1747493019858781.
[26]
LIU J Y, LIN C, MINUTI A, et al. Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: a systematic review[J]. J Neuroimaging, 2021, 31(6): 1067-1076. DOI: 10.1111/jon.12913.
[27]
SOLLMANN N, HOFFMANN G, SCHRAMM S, et al. Arterial spin labeling (ASL) in neuroradiological diagnostics-methodological overview and use cases[J]. Rofo, 2024, 196(1): 36-51. DOI: 10.1055/a-2119-5574.
[28]
WOODS J G, ACHTEN E, ASLLANI I, et al. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications[J]. Magn Reson Med, 2024, 92(2): 469-495. DOI: 10.1002/mrm.30091.
[29]
LINDNER T, BOLAR D S, ACHTEN E, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[30]
YAN C M, YU F, ZHANG Y J, et al. Multidelay arterial spin labeling versus computed tomography perfusion in penumbra volume of acute ischemic stroke[J]. Stroke, 2023, 54(4): 1037-1045. DOI: 10.1161/STROKEAHA.122.040759.
[31]
ZHANG M, ZHU W S, MA Y, et al. Early neurological deterioration and hypoperfusion volume ratio on arterial spin labeling in patients with acute ischemic stroke[J/OL]. J Stroke Cerebrovasc Dis, 2021, 30(8): 105885 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34107416/. DOI: 10.1016/j.jstrokecerebrovasdis.2021.105885.
[32]
GOPINATH G, ASLAM M, ANUSHA P. Role of magnetic resonance perfusion imaging in acute stroke: arterial spin labeling versus dynamic susceptibility contrast-enhanced perfusion[J/OL]. Cureus, 2022, 14(3): e23625 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/35494896/. DOI: 10.7759/cureus.23625.
[33]
LI X H, LU Z M, LI S, et al. Effect of MR-guided perfusion imaging mismatch profiles within 6 h on endovascular thrombectomy outcomes[J]. Neurol Sci, 2025, 46(1): 285-293. DOI: 10.1007/s10072-024-07751-x.
[34]
LEE T J, ROH H G, KIM H J, et al. Prognostic value of collateral perfusion estimation by arterial spin labeling for acute anterior circulation ischemic stroke[J]. Neuroradiology, 2023, 65(12): 1695-1705. DOI: 10.1007/s00234-023-03233-7.
[35]
WU L H, LIU Y H, ZHU L F, et al. MRI arterial spin labeling in evaluating hemorrhagic transformation following endovascular recanalization of subacute ischemic stroke[J/OL]. Front Neurosci, 2023, 17: 1105816 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/36937682/. DOI: 10.3389/fnins.2023.1105816.
[36]
HUANG J B, HAO P, CHEN Z L, et al. Quantitative assessment of hyperperfusion using arterial spin labeling to predict hemorrhagic transformation in acute ischemic stroke patients with mechanical endovascular therapy[J]. Eur Radiol, 2024, 34(1): 579-587. DOI: 10.1007/s00330-023-10007-5.
[37]
ARACKI-TRENKIC A, LAW-YE B, RADOVANOVIC Z, et al. ASL perfusion in acute ischemic stroke: The value of CBF in outcome prediction[J/OL]. Clin Neurol Neurosurg, 2020, 194: 105908 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/32454413/. DOI: 10.1016/j.clineuro.2020.105908.
[38]
THAMM T, GUO J, ROSENBERG J, et al. Contralateral hemispheric cerebral blood flow measured with arterial spin labeling can predict outcome in acute stroke[J]. Stroke, 2019, 50(12): 3408-3415. DOI: 10.1161/STROKEAHA.119.026499.
[39]
SHAN M, LIU K L, MA Y, et al. Arterial transit artifact as a short-term prognostic indicator in acute ischemic stroke[J/OL]. BMC Neurol, 2024, 24(1): 58 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/38336633/. DOI: 10.1186/s12883-024-03560-z.
[40]
NAM K W, KIM C K, YOON B W, et al. Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke[J/OL]. Sci Rep, 2022, 12(1): 1456 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/35087157/. DOI: 10.1038/s41598-022-05465-8.
[41]
IUTAKA T, DE FREITAS M B, OMAR S S, et al. Arterial spin labeling: techniques, clinical applications, and interpretation[J/OL]. Radiographics, 2023, 43(1): e220088 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/36367822/. DOI: 10.1148/rg.220088.
[42]
SU P, FAN H L, LIU P Y, et al. MR fingerprinting ASL: Sequence characterization and comparison with dynamic susceptibility contrast (DSC) MRI[J/OL]. NMR Biomed, 2020, 33(1): e4202 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/31682305/. DOI: 10.1002/nbm.4202.
[43]
GOLAY X, HO M L. Multidelay ASL of the pediatric brain[J/OL]. Br J Radiol, 2022, 95(1134): 20220034 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/35451851/. DOI: 10.1259/bjr.20220034.
[44]
LI Q Q, JIANG C J, QIAN L Q, et al. Prognostic value of multi-PLD ASL-based cerebral perfusion ASPECTS in acute ischemic stroke[J/OL]. Front Neurol, 2024, 15: 1476937 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/39445199/. DOI: 10.3389/fneur.2024.1476937.
[45]
LU Y H, CAI Y, ZHANG Y, et al. Digital subtraction angiography contrast material transport as a direct assessment for blood perfusion of middle cerebral artery stenosis[J/OL]. Front Physiol, 2021, 12: 716173 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34421658/. DOI: 10.3389/fphys.2021.716173.
[46]
SU R S, VAN DER SLUIJS P M, BOBI J, et al. Towards quantitative digital subtraction perfusion angiography: an animal study[J]. Med Phys, 2023, 50(7): 4055-4066. DOI: 10.1002/mp.16473.
[47]
HUANG K M, YAO W H, ZHA M M, et al. Angiography-based hemodynamic features predict recurrent ischemic events after angioplasty and stenting of intracranial vertebrobasilar atherosclerotic stenosis[J]. Eur Radiol, 2024, 34(4): 2352-2363. DOI: 10.1007/s00330-023-10209-x.
[48]
KOSIOR J C, BUCK B, WANNAMAKER R, et al. Exploring reperfusion following endovascular thrombectomy[J]. Stroke, 2019, 50(9): 2389-2395. DOI: 10.1161/STROKEAHA.119.025537.
[49]
SCALZO F, LIEBESKIND D S. Perfusion angiography in acute ischemic stroke[J/OL]. Comput Math Methods Med, 2016, 2016: 2478324 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/27446232/. DOI: 10.1155/2016/2478324.
[50]
DUNDAR A, BOLD M S, AGAC B, et al. Stroke detection with 3 different PET tracers[J]. Radiol Case Rep, 2019, 14(11): 1447-1451. DOI: 10.1016/j.radcr.2019.09.005.
[51]
HEISS W D, HUBER M, FINK G R, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke[J]. J Cereb Blood Flow Metab, 1992, 12(2): 193-203. DOI: 10.1038/jcbfm.1992.29.
[52]
WU J S, LIN B B, LIU W L, et al. Roles of electro-acupuncture in glucose metabolism as assessed by 18F-FDG/PET imaging and AMPKα phosphorylation in rats with ischemic stroke[J]. Int J Mol Med, 2017, 40(3): 875-882. DOI: 10.3892/ijmm.2017.3057.
[53]
WANG L, ZHANG R X, YU Q M. Evaluation algorithm for the effectiveness of stroke rehabilitation treatment using cross-modal deep learning[J/OL]. Comput Math Methods Med, 2022, 2022: 5435207 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/35529256/. DOI: 10.1155/2022/5435207.
[54]
ABUMIYA T, KATOH M, MORIWAKI T, et al. Utility of early post-treatment single-photon emission computed tomography imaging to predict outcome in stroke patients treated with intravenous tissue plasminogen activator[J]. J Stroke Cerebrovasc Dis, 2014, 23(5): 896-901. DOI: 10.1016/j.jstrokecerebrovasdis.2013.07.028.
[55]
NUUTINEN J, LIU Y W, LAAKSO M P, et al. Perfusion differences on SPECT and PWI in patients with acute ischemic stroke[J]. Neuroradiology, 2009, 51(10): 687-695. DOI: 10.1007/s00234-009-0569-9.
[56]
WONG T H, SHAGERA Q A, RYOO H G, et al. Basal and acetazolamide brain perfusion SPECT in internal carotid artery stenosis[J]. Nucl Med Mol Imaging, 2020, 54(1): 9-27. DOI: 10.1007/s13139-019-00633-7.
[57]
AZHARI H F. Advancing stroke diagnosis and management through nuclear medicine: a systematic review of clinical trials[J/OL]. Front Med, 2024, 11: 1425965 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/39224610/. DOI: 10.3389/fmed.2024.1425965.
[58]
RITT P. Recent developments in SPECT/CT[J]. Semin Nucl Med, 2022, 52(3): 276-285. DOI: 10.1053/j.semnuclmed.2022.01.004.
[59]
LÓPEZ-MORA D A, CARRIÓ I, FLOTATS A. Digital PET vs analog PET: clinical implications?[J]. Semin Nucl Med, 2022, 52(3): 302-311. DOI: 10.1053/j.semnuclmed.2021.10.004.

PREV Progress in multimodal MRI and imaging genetics in Parkinson,s disease
NEXT Research progress of fMRI in brain plasticity during the rehabilitation period of hemiplegia after stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn