Share:
Share this content in WeChat
X
Review
Research progress of fMRI in brain plasticity during the rehabilitation period of hemiplegia after stroke
LI Xijun  YU Chengxin  ZHAO Changjiang  PAN Junlong 

Cite this article as: LI X J, YU C X, ZHAO C J, et al. Research progress of fMRI in brain plasticity during the rehabilitation period of hemiplegia after stroke[J]. Chin J Magn Reson Imaging, 2025, 16(2): 135-141. DOI:10.12015/issn.1674-8034.2025.02.022.


[Abstract] Stroke is one of the main causes of disability in the world, which can lead to motor, sensory and cognitive impairments in patients. Traditional rehabilitation treatment cycle is long and has slow effect. In recent years, the application of brain-computer interface, healthy cervical nerve transfer, brain stimulation and cell therapy in stroke patients is to enhance brain plasticity and relieve symptoms. Provides new treatment ideas for clinical practice. Functional magnetic resonance imaging (fMRI) is one of the important research tools in brain science and has been widely used in the research on stroke rehabilitation. It can not only describe functional and network connection changes, but also predict rehabilitation prognosis, guide treatment plans and monitoring the rehabilitation effect provides a theoretical basis for rehabilitation treatment of stroke. This review summarizes the exploration of the application of fMRI technology at home and abroad in recent years in brain network remodeling, analyzes relevant research results and existing difficulties, in order to provide new ideas for fMRI research on stroke rehabilitation treatment.
[Keywords] stroke;magnetic resonance imaging;functional magnetic resonance imaging;brain plasticity;brain network remodeling;functional connectivity;corticospinal tract integrity

LI Xijun1, 2   YU Chengxin1, 2*   ZHAO Changjiang1, 2   PAN Junlong1, 2  

1 The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China

2 Department of Radiology, Yichang Central People's Hospital, Yichang 443000, China

Corresponding author: YU C X, E-mail: 1542353879@qq.com

Conflicts of interest   None.

Received  2025-01-11
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.022
Cite this article as: LI X J, YU C X, ZHAO C J, et al. Research progress of fMRI in brain plasticity during the rehabilitation period of hemiplegia after stroke[J]. Chin J Magn Reson Imaging, 2025, 16(2): 135-141. DOI:10.12015/issn.1674-8034.2025.02.022.

[1]
JOY M T, CARMICHAEL S T. Encouraging an excitable brain state: mechanisms of brain repair in stroke[J]. Nat Rev Neurosci, 2021, 22(1): 38-53. DOI: 10.1038/s41583-020-00396-7.
[2]
QI Y, XU Y, WANG H, et al. Network reorganization for neurophysiological and behavioral recovery following stroke[J]. Cent Nerv Syst Agents Med Chem, 2024, 24(2): 117-128. DOI: 10.2174/0118715249277597231226064144.
[3]
RAHAYU U B, WIBOWO S, SETYOPRANOTO I, et al. Effectiveness of physiotherapy interventions in brain plasticity, balance and functional ability in stroke survivors: A randomized controlled trial[J]. NeuroRehabilitation, 2020, 47(4): 463-470. DOI: 10.3233/NRE-203210.
[4]
HARA Y. Brain plasticity and rehabilitation in stroke patients[J]. J Nippon Med Sch, 2015, 82(1): 4-13. DOI: 10.1272/jnms.82.4.
[5]
LUO L, HUANG X, XIAO Y, et al. Facial emotion perception and recognition deficits in acute ischemic stroke[J]. J Clin Neurosci, 2022, 106: 219-225. DOI: 10.1016/j.jocn.2022.10.002.
[6]
TAY J, MORRIS R G, MARKUS H S. Apathy after stroke: Diagnosis, mechanisms, consequences, and treatment[J]. Int J Stroke, 2021, 16(5): 510-518. DOI: 10.1177/1747493021990906.
[7]
GANDOLLA M, NIERO L, MOLTENI F, et al. Brain plasticity mechanisms underlying motor control reorganization: Pilot longitudinal study on post-stroke subjects[J/OL]. Brain Sci, 2021, 11(3): 329 [2024-12-19]. https://www.ncbi.nlm.nih.gov/pubmed/33807679. DOI: 10.3390/brainsci11030329.
[8]
BINDER E, LEIMBACH M, POOL E M, et al. Cortical reorganization after motor stroke: A pilot study on differences between the upper and lower limbs[J]. Hum Brain Mapp, 2021, 42(4): 1013-1033. DOI: 10.1002/hbm.25275.
[9]
SALAZAR C A, WELSH J M, LENCH D, et al. Concurrent tDCS-fMRI after stroke reveals link between attention network organization and motor improvement[J/OL]. Sci Rep, 2024, 14(1): 19334 [2025-02-07]. https://www.ncbi.nlm.nih.gov/pubmed/39164440. DOI: 10.1038/s41598-024-70083-5.
[10]
LEE J, KIM Y H. Does a cognitive network contribute to motor recovery after ischemic stroke?[J]. Neurorehabil Neural Repair, 2023, 37(7): 458-465. DOI: 10.1177/15459683231177604.
[11]
MUSTIN M, HENSEL L, FINK G R, et al. Individual contralesional recruitment in the context of structural reserve in early motor reorganization after stroke[J/OL]. Neuroimage, 2024, 300: 120828 [2024-12-13]. https://www.ncbi.nlm.nih.gov/pubmed/39293355. DOI: 10.1016/j.neuroimage.2024.120828.
[12]
CHEN X, LI M, CHEN N, et al. Structural covariance of the ipsilesional primary motor cortex in subcortical stroke patients with motor deficits[J/OL]. Neural Plast, 2022, 2022(1): 1460326 [2024-12-15]. https://www.ncbi.nlm.nih.gov/pubmed/35309255. DOI: 10.1155/2022/1460326.
[13]
PALLAST N, WIETERS F, NILL M, et al. Graph theoretical quantification of white matter reorganization after cortical stroke in mice[J/OL]. Neuroimage, 2020, 217: 116873 [2024-11-27]. https://www.ncbi.nlm.nih.gov/pubmed/32380139. DOI: 10.1016/j.neuroimage.2020.116873.
[14]
SCHEVENELS K, GERRITS R, LEMMENS R, et al. Early white matter connectivity and plasticity in post stroke aphasia recovery[J/OL]. Neuroimage Clin, 2022, 36: 103271 [2024-12-19]. https://www.ncbi.nlm.nih.gov/pubmed/36510409. DOI: 10.1016/j.nicl.2022.103271.
[15]
TEWARIE P, PRASSE B, MEIER J M, et al. Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches[J/OL]. Neuroimage, 2020, 216: 116805 [2024-12-19]. https://www.ncbi.nlm.nih.gov/pubmed/32335264. DOI: 10.1016/j.neuroimage.2020.116805.
[16]
ZHANG H, ZHAO J, FAN L, et al. Exploring the structural plasticity mechanism of corticospinal tract during stroke rehabilitation based automated fiber quantification tractography[J]. Neurorehabil Neural Repair, 2024, 38(6): 425-436. DOI: 10.1177/15459683241249115.
[17]
JOHNSON B P, COHEN L G. Applied strategies of neuroplasticity[J]. Handb Clin Neurol, 2023, 196: 599-609. DOI: 10.1016/B978-0-323-98817-9.00011-9.
[18]
ZHU H, ZUO L, ZHU W, et al. The distinct disrupted plasticity in structural and functional network in mild stroke with basal ganglia region infarcts[J]. Brain Imaging Behav, 2022, 16(5): 2199-2219. DOI: 10.1007/s11682-022-00689-8.
[19]
FRUHWIRTH V, BERGER L, GATTRINGER T, et al. White matter integrity and functional connectivity of the default mode network in acute stroke are associated with cognitive outcome three months post-stroke[J/OL]. J Neurol Sci, 2024, 462: 123071 [2024-12-19]. https://www.ncbi.nlm.nih.gov/pubmed/38850772. DOI: 10.1016/j.jns.2024.123071.
[20]
XING Y, BAI Y. A review of exercise-induced neuroplasticity in ischemic stroke: Pathology and mechanisms[J]. Mol Neurobiol, 2020, 57(10): 4218-4231. DOI: 10.1007/s12035-020-02021-1.
[21]
SU F, XU W. Enhancing brain plasticity to promote stroke recovery[J/OL]. Front Neurol, 2020, 11: 554089 [2024-11-27]. https://www.ncbi.nlm.nih.gov/pubmed/33192987. DOI: 10.3389/fneur.2020.554089.
[22]
LI M, GAO Y, DING Z, et al. Power spectra reveal distinct BOLD resting-state time courses in white matter[J/OL]. Proc Natl Acad Sci U S A, 2021, 118(44): e2103104118 [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/34716261. DOI: 10.1073/pnas.2103104118.
[23]
WANG P, MENG C, YUAN R, et al. The organization of the human corpus callosum estimated by intrinsic functional connectivity with white-matter functional networks[J]. Cereb Cortex, 2020, 30(5): 3313-3324. DOI: 10.1093/cercor/bhz311.
[24]
LI J, WU G R, LI B, et al. Transcriptomic and macroscopic architectures of intersubject functional variability in human brain white-matter[J/OL]. Commun Biol, 2021, 4(1): 1417 [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/34931033. DOI: 10.1038/s42003-021-02952-y.
[25]
LI J, BISWAL B B, WANG P, et al. Exploring the functional connectome in white matter[J]. Hum Brain Mapp, 2019, 40(15): 4331-4344. DOI: 10.1002/hbm.24705.
[26]
WANG P, WANG J, MICHAEL A, et al. White matter functional connectivity in resting-state fmri: Robustness, reliability, and relationships to gray matter[J]. Cereb Cortex, 2022, 32(8): 1547-1559. DOI: 10.1093/cercor/bhab181.
[27]
HUANG Y, YANG Y, HAO L, et al. Detection of functional networks within white matter using independent component analysis[J/OL]. Neuroimage, 2020, 222: 117278 [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/32835817. DOI: 10.1016/j.neuroimage.2020.117278.
[28]
EBY A L, REMEDIOS L W, KIM M E, et al. Identification of functional white matter networks in BOLD fMRI[J/OL]. Proc SPIE Int Soc Opt Eng, 2024, 12926 [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/39220214. DOI: 10.1117/12.3006231.
[29]
HUANG Y, WEI P H, XU L, et al. Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter[J/OL]. Nat Commun, 2023, 14(1): 3414 [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/37296147. DOI: 10.1038/s41467-023-39067-3.
[30]
YOURGANOV G, STARK B C, FRIDRIKSSON J, et al. Effect of stroke on contralateral functional connectivity[J]. Brain Connect, 2021, 11(7): 543-552. DOI: 10.1089/brain.2020.0901.
[31]
YU X, WU K, LI Y, et al. Dynamic reorganization patterns of brain modules after stroke reflecting motor function[J/OL]. J Integr Neurosci, 2024, 23(10): 182 [2024-11-27]. https://www.ncbi.nlm.nih.gov/pubmed/39473152. DOI: 10.31083/j.jin2310182.
[32]
LI Q G, ZHAO C, SHAN Y, et al. Dynamic neural network changes revealed by voxel-based functional connectivity strength in left basal ganglia ischemic stroke[J/OL]. Front Neurosci, 2020, 14: 526645 [2024-11-27]. https://www.ncbi.nlm.nih.gov/pubmed/33071728. DOI: 10.3389/fnins.2020.526645.
[33]
GUERRA-CARRILLO B, MACKEY A P, BUNGE S A. Resting-state fMRI: a window into human brain plasticity[J]. Neuroscientist, 2014, 20(5): 522-533. DOI: 10.1177/1073858414524442.
[34]
PAUL T, HENSEL L, REHME A K, et al. Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation[J]. Hum Brain Mapp, 2021, 42(16): 5230-5243. DOI: 10.1002/hbm.25612.
[35]
BRUYN N, BONKHOFF A K, SAENEN L, et al. Altered dynamic resting state functional connectivity associated with somatosensory impairments in the upper limb in the early sub-acute phase post-stroke[J]. Neurorehabil Neural Repair, 2023, 37(7): 423-433. DOI: 10.1177/15459683231179172.
[36]
JIANG K, DING L, LI H, et al. Degree centrality and voxel-mirrored homotopic connectivity in children with nocturnal enuresis: A functional MRI study[J]. Neurol India, 2018, 66(5): 1359-1364. DOI: 10.4103/0028-3886.241334.
[37]
YAO G, LI J, LIU S, et al. Alterations of functional connectivity in stroke patients with basal ganglia damage and cognitive impairment[J/OL]. Front Neurol, 2020, 11: 980 [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/33013648. DOI: 10.3389/fneur.2020.00980.
[38]
YAN C, YU F, ZHANG Y, et al. Multidelay arterial spin labeling versus computed tomography perfusion in penumbra volume of acute ischemic stroke[J]. Stroke, 2023, 54(4): 1037-1045. DOI: 10.1161/STROKEAHA.122.040759.
[39]
JOZSA T I, PETR J, PAYNE S J, et al. MRI-based parameter inference for cerebral perfusion modelling in health and ischaemic stroke[J/OL]. Comput Biol Med, 2023, 166: 107543 [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/37837725. DOI: 10.1016/j.compbiomed.2023.107543.
[40]
YU X, YANG L, SONG R, et al. Changes in structure and perfusion of grey matter tissues during recovery from Ischaemic subcortical stroke: a longitudinal MRI study[J]. Eur J Neurosci, 2017, 46(7): 2308-2314. DOI: 10.1111/ejn.13669.
[41]
MIAO P, WANG C, LI P, et al. Altered gray matter volume, cerebral blood flow and functional connectivity in chronic stroke patients[J]. Neurosci Lett, 2018, 662: 331-338. DOI: 10.1016/j.neulet.2017.05.066.
[42]
CALIXTO C, MACHADO-RIVAS F, CORTES-ALBORNOZ M C, et al. Characterizing microstructural development in the fetal brain using diffusion MRI from 23 to 36 weeks of gestation[J/OL]. Cereb Cortex, 2024, 34(1): [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/37948665. DOI: 10.1093/cercor/bhad409.
[43]
WANG L W, CHO K H, CHAO P Y, et al. White and gray matter integrity evaluated by MRI-DTI can serve as noninvasive and reliable indicators of structural and functional alterations in chronic neurotrauma[J/OL]. Sci Rep, 2024, 14(1): 7244 [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/38538745. DOI: 10.1038/s41598-024-57706-7.
[44]
LIU J, WANG C, CHENG J, et al. Dynamic relationship between interhemispheric functional connectivity and corticospinal tract changing pattern after subcortical stroke[J/OL]. Front Aging Neurosci, 2022, 14: 870718 [2024-11-27]. https://www.ncbi.nlm.nih.gov/pubmed/35601612. DOI: 10.3389/fnagi.2022.870718.
[45]
LOUBINOUX I, LAFUMA M, RIGAL J, et al. Diffusion tensor imaging and gray matter volumetry to evaluate cerebral remodeling processes after a pure motor stroke: a longitudinal study[J]. J Neurol, 2024, 271(10): 6876-6887. DOI: 10.1007/s00415-024-12648-y.
[46]
FRIZZELL T O, PHULL E, KHAN M, et al. Imaging functional neuroplasticity in human white matter tracts[J]. Brain Struct Funct, 2022, 227(1): 381-392. DOI: 10.1007/s00429-021-02407-4.
[47]
VOSS H U, SCHIFF N D. MRI of neuronal network structure, function, and plasticity[J]. Prog Brain Res, 2009, 175: 483-496. DOI: 10.1016/S0079-6123(09)17532-5.
[48]
YU X, JIAERKEN Y, WANG S, et al. Changes in the corticospinal tract beyond the ischemic lesion following acute hemispheric stroke: A diffusion kurtosis imaging study[J]. J Magn Reson Imaging, 2020, 52(2): 512-519. DOI: 10.1002/jmri.27066.
[49]
HONG H, YU X, ZHANG R, et al. Cortical degeneration detected by neurite orientation dispersion and density imaging in chronic lacunar infarcts[J]. Quant Imaging Med Surg, 2021, 11(5): 2114-2124. DOI: 10.21037/qims-20-880.
[50]
ZHANG J, LI L, JI R, et al. NODDI identifies cognitive associations with in vivo microstructural changes in remote cortical regions and thalamocortical pathways in thalamic stroke[J/OL]. Transl Stroke Res, 2023: [2024-11-28]. https://www.ncbi.nlm.nih.gov/pubmed/38049671. DOI: 10.1007/s12975-023-01221-w.
[51]
PAUL T, WIEMER V M, HENSEL L, et al. Interhemispheric structural connectivity underlies motor recovery after stroke[J]. Ann Neurol, 2023, 94(4): 785-797. DOI: 10.1002/ana.26737.
[52]
WANG C, HOLLY L T, OUGHOURLIAN T, et al. Detection of cerebral reorganization associated with degenerative cervical myelopathy using diffusion spectral imaging (DSI)[J]. J Clin Neurosci, 2021, 86: 164-173. DOI: 10.1016/j.jocn.2021.01.011.
[53]
JIMENEZ-MARIN A, DE BRUYN N, GOOIJERS J, et al. Multimodal and multidomain lesion network mapping enhances prediction of sensorimotor behavior in stroke patients[J/OL]. Sci Rep, 2022, 12(1): 22400 [2025-02-07]. https://www.ncbi.nlm.nih.gov/pubmed/36575263. DOI: 10.1038/s41598-022-26945-x.
[54]
CLERIGUES A, VALVERDE S, BERNAL J, et al. Acute and sub-acute stroke lesion segmentation from multimodal MRI[J/OL]. Comput Methods Programs Biomed, 2020, 194: 105521 [2025-02-07]. https://www.ncbi.nlm.nih.gov/pubmed/32434099. DOI: 10.1016/j.cmpb.2020.105521.
[55]
LIU Y, YU Y, OUYANG J, et al. Functional outcome prediction in acute ischemic stroke using a fused imaging and clinical deep learning model[J]. Stroke, 2023, 54(9): 2316-2327. DOI: 10.1161/STROKEAHA.123.044072.
[56]
ALTMANN S, GRAUHAN N F, BROCKSTEDT L, et al. Ultrafast brain MRI with deep learning reconstruction for suspected acute ischemic stroke[J/OL]. Radiology, 2024, 310(2): e231938 [2025-02-09]. https://www.ncbi.nlm.nih.gov/pubmed/38376403. DOI: 10.1148/radiol.231938.

PREV Research progress of perfusion imaging in the treatment and prognosis assessment of ischemic stroke
NEXT Research progress of blood-brain barrier evaluation methods based on arterial spin labeling in central nervous system diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn