Share:
Share this content in WeChat
X
Review
Research progress of blood-brain barrier evaluation methods based on arterial spin labeling in central nervous system diseases
LI Mengyao  ZHANG Hao  CAO Jibin 

Cite this article as: LI M Y, ZHANG H, CAO J B. Research progress of blood-brain barrier evaluation methods based on arterial spin labeling in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2025, 16(2): 142-148. DOI:10.12015/issn.1674-8034.2025.02.023.


[Abstract] The blood-brain barrier (BBB) is a critical component of the neurovascular unit and is crucial for maintaining the stability of the central nervous system. Its dysfunction is associated with various neurological disorders. Arterial spin labeling (ASL) technology, a non-invasive magnetic resonance imaging (MRI) method, uses water protons as a natural endogenous tracer. By monitoring the exchange of ASL signals from microvessels to brain tissue, it assesses the functional status of the BBB. This article will discuss the application of three BBB assessment techniques based on ASL in Alzheimer's disease (AD), sickle cell disease (SCD), demyelinating diseases, cerebral small vessel disease (CSVD), and schizophrenia spectrum disorder (SSD), with the aim of providing important references for researchers to use these techniques to study the functional impairment of BBB in central nervous system diseases.
[Keywords] Alzheimer's disease;sickle cell disease;magnetic resonance imaging;arterial spin labeling;brain-blood barrier

LI Mengyao   ZHANG Hao   CAO Jibin*  

Department of Radiology, the First Hospital of China Medical University, Shenyang 110001, China

Corresponding author: CAO J B, E-mail: cmucao@163.com

Conflicts of interest   None.

Received  2024-11-12
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.023
Cite this article as: LI M Y, ZHANG H, CAO J B. Research progress of blood-brain barrier evaluation methods based on arterial spin labeling in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2025, 16(2): 142-148. DOI:10.12015/issn.1674-8034.2025.02.023.

[1]
ZAPATA-ACEVEDO J F, MANTILLA-GALINDO A, VARGAS-SÁNCHEZ K, et al. Blood-brain barrier biomarkers[J/OL]. Adv Clin Chem, 2024, 121: 1-88 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38797540/. DOI: 10.1016/bs.acc.2024.04.004.
[2]
SHIMIZU F, NAKAMORI M. Blood-brain barrier disruption in neuroimmunological disease[J/OL]. Int J Mol Sci, 2024, 25(19): 10625 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/39408955/. DOI: 10.3390/ijms251910625.
[3]
LEE R L, FUNK K E. Imaging blood-brain barrier disruption in neuroinflammation and Alzheimer's disease[J/OL]. Front Aging Neurosci, 2023, 15: 1144036 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37009464/. DOI: 10.3389/fnagi.2023.1144036.
[4]
SWEENEY M D, ZHAO Z, MONTAGNE A, et al. Blood-brain barrier: from physiology to disease and back[J]. Physiol Rev, 2019, 99(1): 21-78. DOI: 10.1152/physrev.00050.2017.
[5]
LI Y R, SADIQ A, WANG Z. Arterial spin labelling-based blood-brain barrier assessment and its applications[J]. Investig Magn Reson Imaging, 2022, 26(4): 229-236. DOI: 10.13104/imri.2022.26.4.229.
[6]
ALKHALIFA A E, AL-GHRAIYBAH N F, ODUM J, et al. Blood-brain barrier breakdown in Alzheimer's disease: mechanisms and targeted strategies[J/OL]. Int J Mol Sci, 2023, 24(22): 16288 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38003477/. DOI: 10.3390/ijms242216288.
[7]
CHE J, SUN Y Y, DENG Y X, et al. Blood-brain barrier disruption: a culprit of cognitive decline?[J/OL]. Fluids Barriers CNS, 2024, 21(1): 63 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/39113115/. DOI: 10.1186/s12987-024-00563-3.
[8]
LIN Z X, LANCE E, MCINTYRE T, et al. Imaging blood-brain barrier permeability through MRI in pediatric sickle cell disease: a feasibility study[J]. J Magn Reson Imaging, 2022, 55(5): 1551-1558. DOI: 10.1002/jmri.27965.
[9]
KERKHOFS D, WONG S M, ZHANG E, et al. Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study[J]. Geroscience, 2021, 43(4): 1643-1652. DOI: 10.1007/s11357-021-00399-x.
[10]
LI Y Y, YING Y Q, YAO T Y, et al. Decreased water exchange rate across blood-brain barrier in hereditary cerebral small vessel disease[J]. Brain, 2023, 146(7): 3079-3087. DOI: 10.1093/brain/awac500.
[11]
GOLDWASER E L, WANG D J J, ADHIKARI B M, et al. Evidence of neurovascular water exchange and endothelial vascular dysfunction in schizophrenia: an exploratory study[J]. Schizophr Bull, 2023, 49(5): 1325-1335. DOI: 10.1093/schbul/sbad057.
[12]
CAMPANA M, LÖHRS L, STRAUß J, et al. Blood-brain barrier dysfunction and folate and vitamin B12 levels in first-episode schizophrenia-spectrum psychosis: a retrospective chart review[J]. Eur Arch Psychiatry Clin Neurosci, 2023, 273(8): 1693-1701. DOI: 10.1007/s00406-023-01572-3.
[13]
PADRELA B, MAHROO A, TEE M, et al. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol[J/OL]. BMJ Open, 2024, 14(3): e081635 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38458785/. DOI: 10.1136/bmjopen-2023-081635.
[14]
SHAO X F, ZHAO C Y, SHOU Q Y, et al. Quantification of blood-brain barrier water exchange and permeability with multidelay diffusion-weighted pseudo-continuous arterial spin labeling[J]. Magn Reson Med, 2023, 89(5): 1990-2004. DOI: 10.1002/mrm.29581.
[15]
VOORTER P H M, VAN DINTHER M, JANSEN W J, et al. Blood-brain barrier disruption and perivascular spaces in small vessel disease and neurodegenerative diseases: a review on MRI methods and insights[J]. J Magn Reson Imaging, 2024, 59(2): 397-411. DOI: 10.1002/jmri.28989.
[16]
FORD J N, ZHANG Q H, SWEENEY E M, et al. Quantitative water permeability mapping of blood-brain-barrier dysfunction in aging[J/OL]. Front Aging Neurosci, 2022, 14: 867452 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/35462701/. DOI: 10.3389/fnagi.2022.867452.
[17]
HUANG D, GUO Y L, GUAN X Y, et al. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment[J]. J Cereb Blood Flow Metab, 2023, 43(2): 173-184. DOI: 10.1177/0271678X221135353.
[18]
CALLEWAERT B, GSELL W, LOX M, et al. A timeline study on vascular co-morbidity induced cerebral endothelial dysfunction assessed by perfusion MRI[J/OL]. Neurobiol Dis, 2024, 202: 106709 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/39433136/. DOI: 10.1016/j.nbd.2024.106709.
[19]
TIWARI Y V, MUIR E R, JIANG Z, et al. Diffusion-weighted arterial spin labeling MRI to investigate mannitol-induced blood brain barrier disruption[J/OL]. Magn Reson Imaging, 2025, 117: 110335 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/39864601/. DOI: 10.1016/j.mri.2025.110335.
[20]
LIN Z X, LI Y, SU P, et al. Non-contrast MR imaging of blood-brain barrier permeability to water[J]. Magn Reson Med, 2018, 80(4): 1507-1520. DOI: 10.1002/mrm.27141.
[21]
WEI Z L, LIU H S, LIN Z X, et al. Non-contrast assessment of blood-brain barrier permeability to water in mice: an arterial spin labeling study at cerebral veins[J/OL]. Neuroimage, 2023, 268: 119870 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/36640948/. DOI: 10.1016/j.neuroimage.2023.119870.
[22]
GOLD B T, SHAO X F, SUDDUTH T L, et al. Water exchange rate across the blood-brain barrier is associated with CSF amyloid-β 42 in healthy older adults[J]. Alzheimers Dement, 2021, 17(12): 2020-2029. DOI: 10.1002/alz.12357.
[23]
ZACHARIOU V, PAPPAS C, BAUER C E, et al. Regional differences in the link between water exchange rate across the blood-brain barrier and cognitive performance in normal aging[J]. Geroscience, 2024, 46(1): 265-282. DOI: 10.1007/s11357-023-00930-2.
[24]
UCHIDA Y, KAN H, FURUKAWA G, et al. Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study[J/OL]. Fluids Barriers CNS, 2023, 20(1): 60 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37592310/. DOI: 10.1186/s12987-023-00464-x.
[25]
LING C, ZHANG J Y, SHAO X F, et al. Diffusion prepared pseudo-continuous arterial spin labeling reveals blood-brain barrier dysfunction in patients with CADASIL[J]. Eur Radiol, 2023, 33(10): 6959-6969. DOI: 10.1007/s00330-023-09652-7.
[26]
CHEN Y N, ZHANG Y M, SUN B, et al. Advances in magnetic resonance ASL techniques and their artifact mechanisms[J]. Int J Med Radiol, 2023, 46(6): 716-720. DOI: 10.19300/j.2023.Z20610.
[27]
TOGAO O, OBARA M, YAMASHITA K, et al. Arterial spin labeling-based MR angiography for cerebrovascular diseases: principles and clinical applications[J]. J Magn Reson Imaging, 2024, 60(4): 1305-1324. DOI: 10.1002/jmri.29119.
[28]
CHU D D, YANG X Y, WANG J, et al. Tau truncation in the pathogenesis of Alzheimer's disease: a narrative review[J]. Neural Regen Res, 2024, 19(6): 1221-1232. DOI: 10.4103/1673-5374.385853.
[29]
TIWARI Y V, LU J F, SHEN Q, et al. Magnetic resonance imaging of blood-brain barrier permeability in ischemic stroke using diffusion-weighted arterial spin labeling in rats[J]. J Cereb Blood Flow Metab, 2017, 37(8): 2706-2715. DOI: 10.1177/0271678X16673385.
[30]
FUJIMA N, KAMEDA H, SHIMIZU Y, et al. Utility of a diffusion-weighted arterial spin labeling (DW-ASL) technique for evaluating the progression of brain white matter lesions[J/OL]. Magn Reson Imaging, 2020, 69: 81-87 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/32217128/. DOI: 10.1016/j.mri.2020.03.005.
[31]
LIN Z X, JIANG D R, LIU D P, et al. Noncontrast assessment of blood-brain barrier permeability to water: Shorter acquisition, test-retest reproducibility, and comparison with contrast-based method[J]. Magn Reson Med, 2021, 86(1): 143-156. DOI: 10.1002/mrm.28687.
[32]
LIN Z X, SUR S, LIU P Y, et al. Blood–brain barrier breakdown in relationship to Alzheimer and vascular disease[J]. Ann Neurol, 2021, 90(2): 227-238. DOI: 10.1002/ana.26134.
[33]
PREIS L, VILLRINGER K, BROSSERON F, et al. Assessing blood-brain barrier dysfunction and its association with Alzheimer's pathology, cognitive impairment and neuroinflammation[J/OL]. Alzheimers Res Ther, 2024, 16(1): 172 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/39085945/. DOI: 10.1186/s13195-024-01529-1.
[34]
BRANDOW A M, LIEM R I. Advances in the diagnosis and treatment of sickle cell disease[J/OL]. J Hematol Oncol, 2022, 15(1): 20 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/35241123/. DOI: 10.1186/s13045-022-01237-z.
[35]
SUNDD P, GLADWIN M T, NOVELLI E M. Pathophysiology of sickle cell disease[J/OL]. Annu Rev Pathol, 2019, 14: 263-292 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/30332562/. DOI: 10.1146/annurev-pathmechdis-012418-012838.
[36]
KHAIBULLINA A, ALMEIDA L E F, KAMIMURA S, et al. Sickle cell disease mice have cerebral oxidative stress and vascular and white matter abnormalities[J/OL]. Blood Cells Mol Dis, 2021, 86: 102493 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/32927249/. DOI: 10.1016/j.bcmd.2020.102493.
[37]
PAVITRA E, ACHARYA R K, GUPTA V K, et al. Impacts of oxidative stress and anti-oxidants on the development, pathogenesis, and therapy of sickle cell disease: a comprehensive review[J/OL]. Biomed Pharmacother, 2024, 176: 116849 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38823275/. DOI: 10.1016/j.biopha.2024.116849.
[38]
LIN Z X, MCINTYRE T, JIANG D R, et al. Brain oxygen extraction and metabolism in pediatric patients with sickle cell disease: comparison of four calibration models[J/OL]. Front Physiol, 2022, 13: 814979 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/35222083/. DOI: 10.3389/fphys.2022.814979.
[39]
GE D N, CHEN F T, CHEN J, et al. Research progress of plasma biomarkers and the association with MRI neuroimaging and cognitive function in patients with Alzheimer's disease[J]. Chin J Magn Reson Imag, 2024, 15(11): 142-147. DOI: 10.12015/issn.1674-8034.2024.11.022.
[40]
SHAO X F, SHOU Q Y, FELIX K, et al. Age-related decline in blood-brain barrier function is more pronounced in males than females in parietal and temporal regions[J/OL]. bioRxiv, 2024: 2024.01.12.575463 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38293052/. DOI: 10.1101/2024.01.12.575463.
[41]
PAPPAS C, BAUER C E, ZACHARIOU V, et al. MRI free water mediates the association between water exchange rate across the blood brain barrier and executive function among older adults[J/OL]. Imaging Neurosci, 2024, 2: 1-15 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38947942/. DOI: 10.1162/imag_a_00183.
[42]
CHAI Y K, ZHAI F P, YU H E. The role of the glymphatic system in the occurrence and development of central nervous system demyelinating diseases[J]. Chin J Neuroimmunol Neurol, 2024, 31(3): 216-220. DOI: 10.3969/j.issn.1006-2963.2024.03.011.
[43]
WENGLER K, HA J, SYRITSYNA O, et al. Abnormal blood-brain barrier water exchange in chronic multiple sclerosis lesions: a preliminary study[J/OL]. Magn Reson Imag, 2020, 70: 126-133 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/32353529/. DOI: 10.1016/j.mri.2020.04.017.
[44]
TAGGE I J, ANDERSON V C, SPRINGER C S, et al. Gray matter blood-brain barrier water exchange dynamics are reduced in progressive multiple sclerosis[J]. J Neuroimaging, 2021, 31(6): 1111-1118. DOI: 10.1111/jon.12912.
[45]
KHATTAR N, TRIEBSWETTER C, KIELY M, et al. Investigation of the association between cerebral iron content and myelin content in normative aging using quantitative magnetic resonance neuroimaging[J/OL]. Neuroimage, 2021, 239: 118267 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/34139358/. DOI: 10.1016/j.neuroimage.2021.118267.
[46]
JIAO G, HUANG D H. Clinical value and MRI advance of iron rim lesions in multiple sclerosis[J]. Chin J Neuroimmunol Neurol, 2023, 30(4): 272-276. DOI: 10.3969/j.issn.1006-2963.2023.04.008.
[47]
TIAN Q, JIA F, JIA Y C. The role of ferroptosis inhibitors in ischemic stroke[J]. Chin J Biochem Mol Biol, 2024, 40(11): 1531-1538. DOI: 10.13865/j.cnki.cjbmb.2024.09.1150.
[48]
ANG P S, ZHANG D M, AZIZI S A, et al. The glymphatic system and cerebral small vessel disease[J/OL]. J Stroke Cerebrovasc Dis, 2024, 33(3): 107557 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38198946/. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107557.
[49]
YUAN L M, CHEN X Y, JANKOVIC J, et al. CADASIL: a NOTCH3-associated cerebral small vessel disease[J/OL]. J Adv Res, 2024, 66: 223-235 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38176524/. DOI: 10.1016/j.jare.2024.01.001.
[50]
SHAO X F, MA S J, CASEY M, et al. Mapping water exchange across the blood-brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI[J]. Magn Reson Med, 2019, 81(5): 3065-3079. DOI: 10.1002/mrm.27632.
[51]
YING Y Q, LI Y Y, YAO T Y, et al. Heterogeneous blood-brain barrier dysfunction in cerebral small vessel diseases[J]. Alzheimers Dement, 2024, 20(7): 4527-4539. DOI: 10.1002/alz.13874.
[52]
PONG S, KARMACHARYA R, SOFMAN M, et al. The role of brain microvascular endothelial cell and blood-brain barrier dysfunction in schizophrenia[J]. Complex Psychiatry, 2020, 6(1/2): 30-46. DOI: 10.1159/000511552.
[53]
FUTTRUP J, MARGOLINSKY R, BENROS M E, et al. Blood-brain barrier pathology in patients with severe mental disorders: a systematic review and meta-analysis of biomarkers in case-control studies[J/OL]. Brain Behav Immun Health, 2020, 6: 100102 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/34589864/. DOI: 10.1016/j.bbih.2020.100102.

PREV Research progress of fMRI in brain plasticity during the rehabilitation period of hemiplegia after stroke
NEXT Advances in the application of peritumoral radiomics in gliomas
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn