Share:
Share this content in WeChat
X
Review
Research progress of MRI machine learning in predicting the prognosis of pituitary neuroendocrine tumors
CHEN Chunhui  LUO Pan  DONG Wenjie  HAN Tao  SUN Jiachen  ZHOU Junlin 

Cite this article as: CHEN C H, LUO P, DONG W J, et al. Research progress of MRI machine learning in predicting the prognosis of pituitary neuroendocrine tumors[J]. Chin J Magn Reson Imaging, 2025, 16(2): 154-158. DOI:10.12015/issn.1674-8034.2025.02.025.


[Abstract] Pituitary neuroendocrine tumors (PitNETs) are mostly benign tumors, but pituitary dysfunction, tumor invasiveness, and the occurrence of various complications can significantly affect the quality of life of PitNETs patients, therefore, the non-invasive assessment of tumor prognosis is of great significance in clinical decision-making. MRI is the most commonly used examination method for PitNETs, and MRI machine learning have played an important role in the prognosis assessment of PitNETs. This review summarizes the research progress of MRI machine learning in predicting the chemotherapy prognosis, postoperative recurrence/remission, postoperative complications, and radiotherapy prognosis of PitNETs, with the aim of providing clinical guidance for individualized prognosis assessment and guiding future research.
[Keywords] pituitary neuroendocrine tumors;magnetic resonance imaging;machine learning;deep learning;radiomics;prognosis assessment

CHEN Chunhui1, 2, 3, 4   LUO Pan1, 2, 3, 4   DONG Wenjie1, 2, 3, 4   HAN Tao1, 2, 3, 4   SUN Jiachen1, 2, 3, 4   ZHOU Junlin1, 2, 3, 4*  

1 Department of Radiology, the Second Hospital of Lanzhou University, Lanzhou 730000, China

2 Second Clinical School of Lanzhou University, Lanzhou 730000, China

3 Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730000, China

4 Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730000, China

Corresponding author: ZHOU J L, E-mail: lzuzjl601@163.com

Conflicts of interest   None.

Received  2024-11-19
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.025
Cite this article as: CHEN C H, LUO P, DONG W J, et al. Research progress of MRI machine learning in predicting the prognosis of pituitary neuroendocrine tumors[J]. Chin J Magn Reson Imaging, 2025, 16(2): 154-158. DOI:10.12015/issn.1674-8034.2025.02.025.

[1]
MELMED S. Pituitary-Tumor Endocrinopathies[J]. N Engl J Med, 2020, 382(10): 937-950. DOI: 10.1056/NEJMra1810772.
[2]
ZHENG B, ZHAO Z, ZHENG P, et al. The current state of MRI-based radiomics in pituitary adenoma: promising but challenging[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1426781 [2024-11-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11449739. DOI: 10.3389/fendo.2024.1426781.
[3]
SUN W, SUN Y, ZHANG H L. Effect comparison of transnasal sphenoidal neuroendoscopic surgey and microscopic surgery on pituitary tumors[J]. Clinical Medicine, 2023, 43(11): 24-27. DOI: 10.19528/j.issn.1003-3548.2023.11.007.
[4]
FAN Y, LIU Z, HOU B, et al. Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma[J/OL]. Eur J Radiol, 2019, 121: 108647 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/31561943. DOI: 10.1016/j.ejrad.2019.108647.
[5]
LIU X, WANG R, LI M, et al. Pituitary adenoma or pituitary neuroendocrine tumor: a narrative review of controversy and perspective[J]. Transl Cancer Res, 2021, 10(4): 1916-1920. DOI: 10.21037/tcr-20-3446.
[6]
YANG H M, LI W X, LIU Y M, et al. Research progress of deep learning and radiomics in meningioma[J]. Chin J Magn Reson Imaging, 2023, 14(6): 124-128. DOI: 10.12015/issn.1674-8034.2023.06.022.
[7]
LUO P, ZHANG L, YANG L, et al. Progress in the Pathogenesis, Diagnosis, and Treatment of TSH-Secreting Pituitary Neuroendocrine Tumor[J]. Front Endocrinol (Lausanne), 2020, 11: 580264 [2024-11-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7729073. DOI: 10.3389/fendo.2020.580264.
[8]
CHEN M, DECARY M. Artificial intelligence in healthcare: An essential guide for health leaders[J]. Healthc Manage Forum, 2019, 33(1): 10-18. DOI: 10.1177/0840470419873123.
[9]
SOLDOZY S, FARZAD F, YOUNG S, et al. Pituitary Tumors in the Computational Era, Exploring Novel Approaches to Diagnosis, and Outcome Prediction with Machine Learning[J/OL]. World Neurosurg, 2021, 146: 315-321.e311 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/32711142. DOI: 10.1016/j.wneu.2020.07.104.
[10]
ZEYNALOVA A, KOCAK B, DURMAZ E S, et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI[J]. Neuroradiology, 2019, 61(7): 767-774. DOI: 10.1007/s00234-019-02211-2.
[11]
SUN K K, CHEN W, LI Q X, et al. Research progress of multimodal MRI brain tumor image segmentation methods[J]. Chin J Magn Reson Imaging, 2023, 14(11): 164-169, 176. DOI: 10.12015/issn.1674-8034.2023.11.028.
[12]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: Making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2021, 42(1): 426-440. DOI: 10.1002/med.21846.
[13]
PARK Y W, EOM J, KIM S, et al. Radiomics With Ensemble Machine Learning Predicts Dopamine Agonist Response in Patients With Prolactinoma[J/OL]. J Clin Endocrinol Metab, 2021, 106(8): e3069-e3077 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/33713414. DOI: 10.1210/clinem/dgab159.
[14]
KOCAK B, DURMAZ E S, KADIOGLU P, et al. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI[J]. Eur Radiol, 2018, 29(6): 2731-2739. DOI: 10.1007/s00330-018-5876-2.
[15]
CAPATINA C, HANZU F A, HINOJOSA-AMAYA J M, et al. Medical treatment of functional pituitary adenomas, trials and tribulations[J]. J Neurooncol, 2024, 168(2): 197-213. DOI: 10.1007/s11060-024-04670-x.
[16]
FONG K Y, LIM M J R, FU S, et al. Postsurgical outcomes of nonfunctioning pituitary adenomas: a patient-level meta-analysis[J]. Pituitary, 2023, 26(4): 461-473. DOI: 10.1007/s11102-023-01335-2.
[17]
LU L, WAN X, XU Y, et al. Prognostic Factors for Recurrence in Pituitary Adenomas: Recent Progress and Future Directions[J/OL]. Diagnostics (Basel), 2022, 12(4): 977 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/35454025. DOI: 10.3390/diagnostics12040977.
[18]
BIOLETTO F, PRENCIPE N, BERTON A M, et al. Radiomic Analysis in Pituitary Tumors: Current Knowledge and Future Perspectives[J/OL]. J Clin Med, 2024, 13(2): 336 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/38256471. DOI: 10.3390/jcm13020336.
[19]
TROUILLAS J, ROY P, STURM N, et al. A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up[J]. Acta Neuropathologica, 2013, 126(1): 123-135. DOI: 10.1007/s00401-013-1084-y.
[20]
MACHADO L F, ELIAS P C L, MOREIRA A C, et al. MRI radiomics for the prediction of recurrence in patients with clinically non-functioning pituitary macroadenomas[J/OL]. Comput Biol Med, 2020, 124: 103966 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/32860977. DOI: 10.1016/j.compbiomed.2020.103966.
[21]
UGGA L, CUOCOLO R, SOLARI D, et al. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning[J]. Neuroradiology, 2019, 61(12): 1365-1373. DOI: 10.1007/s00234-019-02266-1.
[22]
FAN Y, CHAI Y, LI K, et al. Non-invasive and real-time proliferative activity estimation based on a quantitative radiomics approach for patients with acromegaly: a multicenter study[J]. J Endocrinol Invest, 2019, 43(6): 755-765. DOI: 10.1007/s40618-019-01159-7.
[23]
YANG H A, ZHANG J R, WANG J X, et al. Nomogram model for predicting pituitary adenoma recurrence based on radiomics score and clinicopathological-imaging parameters of multi-sequence MRI[J]. Radiol Practice, 2023, 38(7): 853-862. DOI: 10.13609/j.cnki.1000-0313.2023.07.008.
[24]
HUSSEIN Z, SLACK R W, BALDEWEG S E, et al. Machine Learning Analysis of Post-Operative Tumour Progression in Non-Functioning Pituitary Neuroendocrine Tumours: A Pilot Study[J/OL]. Cancers (Basel), 2024, 16(6): 1199 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/38539533. DOI: 10.3390/cancers16061199.
[25]
ZHOU X Y. Development and validation of prognostic prediction model to estimate the long-term postoperative outcome of pituitary GH adenoma patients[D]. Peking Union Medical College, 2020. DOI: 10.27648/d.cnki.gzxhu.2020.000026.
[26]
ZHANG Y, CHEN C, HUANG W, et al. Machine Learning-Based Radiomics of the Optic Chiasm Predict Visual Outcome Following Pituitary Adenoma Surgery[J/OL]. J Pers Med, 2021, 11(10): 991 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/34683132. DOI: 10.3390/jpm11100991.
[27]
NARDONE V, REGINELLI A, RUBINI D, et al. Delta radiomics: an updated systematic review[J]. Radiol Med, 2024, 129(8): 1197-1214. DOI: 10.1007/s11547-024-01853-4.
[28]
ZHANG Y, ZHENG J, HUANG Z, et al. Predicting visual recovery in pituitary adenoma patients post-endoscopic endonasal transsphenoidal surgery: Harnessing delta-radiomics of the optic chiasm from MRI[J]. Eur Radiol, 2023, 33(11): 7482-7493. DOI: 10.1007/s00330-023-09963-9.
[29]
MOHAMADZADEH O, SADREHOSSEINI S M, TABARI A, et al. Can Preoperative Diffusion Tensor Imaging Tractography Predict the Visual Outcomes of Patients with Pituitary Macroadenomas? A Prospective Pilot Study[J/OL]. World Neurosurg, 2023, 172: e326-e334 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/36640834. DOI: 10.1016/j.wneu.2023.01.022.
[30]
DONG W J, ZHOU J L. Research peogress of MRI radiomics in pituitary neuroendocrine tumors[J]. Chin J Magn Reson Imaging, 2024, 15(6): 179-184. DOI: 10.12015/issn.1674-8034.2024.06.028.
[31]
ZHANG J, WANG Y, XU X, et al. Postoperative complications and quality of life in patients with pituitary adenoma[J]. Gland Surg, 2020, 9(5): 1521-1529. DOI: 10.21037/gs-20-690.
[32]
XU Y. Prediction of diabetes insipidus in patients with pituitary macroadenoma after surgery based on MRI imaging and clinical features[D]. Nanchang University Department of Medicine, 2023. DOI: 10.27232/d.cnki.gnchu.2023.000564.
[33]
CHEN Y, ZHONG J, LI H, et al. Predictive modeling of arginine vasopressin deficiency after transsphenoidal pituitary adenoma resection by using multiple machine learning algorithms[J/OL]. Sci Rep, 2024, 14(1): 22210 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/39333611. DOI: 10.1038/s41598-024-72486-w.
[34]
ZANIER O, ZOLI M, STAARTJES V E, et al. Machine learning-based clinical outcome prediction in surgery for acromegaly[J]. Endocrine, 2021, 75(2): 508-515. DOI: 10.1007/s12020-021-02890-z.
[35]
FANG Z S, WU L. Influence of endoscopic transsphenoidal pituitary adenoma resection on olfactory function[J]. Journal of International Neurology and Neurosurgery, 2023, 50(2): 87-90. DOI: 10.16636/j.cnki.jinn.1673-2642.2023.02.018.
[36]
YAN J F, WANG L Z, LIANG X J, et al. Effect of endoscopic sinus surgery on pituitary adenoma and its influence on olfactory function and level of neuroendocrine hormone[J]. Modern Oncology, 2024, 32(4): 646-651. DOI: 10.3969/J.ISSN.1672-4992.2024.04.010.
[37]
BROOKS E K, INDER W J.Disorders of Salt and Water Balance After Pituitary Surgery[J]. J Clin Endocrinol Metab, 2022, 108(1): 198-208. DOI: 10.1210/clinem/dgac622.
[38]
ZHU T. Analysis of risk factors for hyponatremia after transsphenoidal approach to pituitary tumour resection[D]. Qinghai University, 2023. DOI: 10.27740/d.cnki.gqhdx.2023.000756.
[39]
ISLAM M Y U, AKHTAR S, NASIR R, et al. Comparing redo surgery and stereotactic radiosurgery for recurrent, residual, and/or tumors showing progression in nonfunctioning pituitary adenomas: A systematic review and meta-analysis[J/OL]. Surgical Neurology International, 2024, 15: 37 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/38468659. DOI: 10.25259/sni_907_2023.
[40]
GITTOES N J, BATES A S, TSE W, et al. Radiotherapy for non-function pituitary tumours[J]. Clin Endocrinol (Oxf), 1998, 48(3): 331-337. DOI: 10.1046/j.1365-2265.1998.00393.x.
[41]
PARK P, CHANDLER W F, BARKAN A L, et al. The role of radiation therapy after surgical resection of nonfunctional pituitary macroadenomas[J]. Neurosurgery, 2004, 55(1): 100-106; discussion 106-107. DOI: 10.1227/01.neu.0000126885.71242.d7.
[42]
GUPTA T, CHATTERJEE A.Modern Radiation Therapy for Pituitary Adenoma: Review of Techniques and Outcomes[J]. Neurol India, 2020, 68(7): S113-S122. DOI: 10.4103/0028-3886.287678.
[43]
KOCHER M, RUGE M I, GALLDIKS N, et al. Applications of radiomics and machine learning for radiotherapy of malignant brain tumors[J]. Strahlenther Onkol, 2020, 196(10): 856-867. DOI: 10.1007/s00066-020-01626-8.
[44]
FAN Y, JIANG S, HUA M, et al. Machine Learning-Based Radiomics Predicts Radiotherapeutic Response in Patients With Acromegaly[J/OL]. Front Endocrinol (Lausanne), 2019, 10: 588 [2024-11-19]. https://pubmed.ncbi.nlm.nih.gov/31507537. DOI: 10.3389/fendo.2019.00588.

PREV Advances in the application of peritumoral radiomics in gliomas
NEXT Advances in multi-sequence MRI for differentiating high-grade glioma and brain metastasis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn