Share:
Share this content in WeChat
X
Review
Application of blood flow analysis method based on computational fluid dynamics and 4D Flow MRI in diagnosis and treatment of cardiovascular and cerebrovascular diseases
REN Lei  LIU Jihua  DING Jing  GUO Yu  XIA Shuang 

Cite this article as: REN L, LIU J H, DING J, et al. Application of blood flow analysis method based on computational fluid dynamics and 4D Flow MRI in diagnosis and treatment of cardiovascular and cerebrovascular diseases[J]. Chin J Magn Reson Imaging, 2025, 16(2): 172-178. DOI:10.12015/issn.1674-8034.2025.02.028.


[Abstract] In recent years, blood flow analysis of cardiovascular and cerebrovascular diseases has played an increasingly important role in clinic. Computational fluid dynamics (CFD) and 4D flow magnetic resonance imaging (4D Flow MRI) both can realize the visualization and quantification of blood flow in cardiovascular and cerebrovascular diseases. CFD is the calculation of blood flow by solving the hydrodynamic governing equations based on medical images. It has high spatial and temporal resolution, but depends on model setting and vessel wall boundary condition assumptions. 4D Flow MRI can directly measure true blood flow in the body, but the acquisition time is long and the resolution and accuracy are limited. Therefore, this paper aims to review the advantages and limitations of CFD and 4D Flow MRI, the combined application of the two methods, and the application progress in cardiovascular and cerebrovascular diseases, in order to provide clinicians with a beneficial tool for the diagnosis and treatment of vascular diseases.
[Keywords] cardiovascular and cerebrovascular diseases;computational fluid dynamics;4D flow magnetic resonance imaging;hemodynamics;magnetic resonance imaging

REN Lei1   LIU Jihua1   DING Jing2   GUO Yu2   XIA Shuang2*  

1 Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China

2 Department of Radiology, Tianjin First Central Hospital, Medical Imaging Institute of Tianjin, School of Medicine, Nankai University, Tianjin 300192, China

Corresponding author: XIA S, E-mail: xiashuang77@163.com

Conflicts of interest   None.

Received  2024-10-27
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.028
Cite this article as: REN L, LIU J H, DING J, et al. Application of blood flow analysis method based on computational fluid dynamics and 4D Flow MRI in diagnosis and treatment of cardiovascular and cerebrovascular diseases[J]. Chin J Magn Reson Imaging, 2025, 16(2): 172-178. DOI:10.12015/issn.1674-8034.2025.02.028.

[1]
MARTIN S S, ADAY A W, ALMARZOOQ Z I, et al. 2024 heart disease and stroke statistics: a report of US and global data from the American heart association[J/OL]. Circulation, 2024, 149(8): e347-e913 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/38264914/. DOI: 10.1161/CIR.0000000000001209.
[2]
WOODRUFF R C, TONG X, KHAN S S, et al. Trends in cardiovascular disease mortality rates and excess deaths, 2010-2022[J]. Am J Prev Med, 2024, 66(4): 582-589. DOI: 10.1016/j.amepre.2023.11.009.
[3]
URSCHEL K, TAUCHI M, ACHENBACH S, et al. Investigation of wall shear stress in cardiovascular research and in clinical practice-from bench to bedside[J/OL]. Int J Mol Sci, 2021, 22(11): 5635 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/34073212/. DOI: 10.3390/ijms22115635.
[4]
SAYED R EL, PARK C C, SHAH Z, et al. Assessment of complex flow patterns in patients with carotid webs, patients with carotid atherosclerosis, and healthy subjects using 4D flow MRI[J]. J Magn Reson Imaging, 2024, 59(6): 2001-2010. DOI: 10.1002/jmri.29013.
[5]
WEISS A J, PANDURO A O, SCHWARZ E L, et al. A matched-pair case control study identifying hemodynamic predictors of cerebral aneurysm growth using computational fluid dynamics[J/OL]. Front Physiol, 2023, 14: 1300754 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/38162830/. DOI: 10.3389/fphys.2023.1300754.
[6]
MADSEN K T, NØRGAARD B L, ØVREHUS K A, et al. Completeness of revascularization by FFRCT in stable angina: association to adverse cardiovascular outcomes[J]. J Cardiovasc Comput Tomogr, 2024, 18(5): 494-502. DOI: 10.1016/j.jcct.2024.07.007.
[7]
YU Y, ZHOU Y J, MA Q, et al. The conical stent in coronary artery improves hemodynamics compared with the traditional cylindrical stent[J/OL]. Int J Cardiol, 2017, 227: 166-171 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/27863293/. DOI: 10.1016/j.ijcard.2016.11.065.
[8]
HE Y, NORTHRUP H, LE H, et al. Medical image-based computational fluid dynamics and fluid-structure interaction analysis in vascular diseases[J/OL]. Front Bioeng Biotechnol, 2022, 10: 855791 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/35573253/. DOI: 10.3389/fbioe.2022.855791.
[9]
DIRIX P, BUOSO S, KOZERKE S. Optimizing encoding strategies for 4D Flow MRI of mean and turbulent flow[J/OL]. Sci Rep, 2024, 14: 19897 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/39191846/. DOI: 10.1038/s41598-024-70449-9.
[10]
VAN SCHUPPEN J, VAN DER HULST A E, MICHIEL DEN HARDER J, et al. Prerequisites for clinical implementation of whole-heart 4D-flow MRI: a Delphi analysis[J/OL]. J Magn Reson Imaging, 2024 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/39166882/. DOI: 10.1002/jmri.29550.
[11]
CANDREVA A, DE NISCO G, LODI RIZZINI M, et al. Current and future applications of computational fluid dynamics in coronary artery disease[J/OL]. Rev Cardiovasc Med, 2022, 23(11): 377 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/39076179/. DOI: 10.31083/j.rcm2311377.
[12]
MAROUN A, QUINN S, DUSHFUNIAN D, et al. Clinical applications of four-dimensional flow MRI[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 451-460. DOI: 10.1016/j.mric.2023.04.005.
[13]
BÖHM F, MOGENSEN B, ENGSTRØM T, et al. FFR-guided complete or culprit-only PCI in patients with myocardial infarction[J]. N Engl J Med, 2024, 390(16): 1481-1492. DOI: 10.1056/nejmoa2314149.
[14]
ZHANG X, DING H H, JI X L, et al. Predicting vulnerable carotid plaques by detecting wall shear stress based on ultrasonic vector flow imaging[J/OL]. J Vasc Surg, 2024, 80(5): 1475-1486.e1 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/38925348/. DOI: 10.1016/j.jvs.2024.06.024.
[15]
EERDEKENS R, TONINO P A L, ZIMMERMANN F M, et al. Fluid-filled versus sensor-tipped pressure guidewires for FFR and Pd/Pa measurement; PW-COMPARE study[J/OL]. Int J Cardiol, 2024, 406: 131998 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/38555057/. DOI: 10.1016/j.ijcard.2024.131998.
[16]
KOKTZOGLOU I, OZTURK O, WALKER M T, et al. Quantitative time-of-flight head magnetic resonance angiography of cerebrovascular disease[J]. J Magn Reson Imaging, 2025, 61(1): 404-412. DOI: 10.1002/jmri.29395.
[17]
DU Y G, GODDI A, BORTOLOTTO C, et al. Wall shear stress measurements based on ultrasound vector flow imaging: theoretical studies and clinical examples[J]. J Ultrasound Med, 2020, 39(8): 1649-1664. DOI: 10.1002/jum.15253.
[18]
NIKOPOULOS S, PAPAFAKLIS M I, TSOMPOU P, et al. Virtual hemodynamic assessment of coronary lesions: the advent of functional angiography and coronary imaging[J/OL]. J Clin Med, 2024, 13(8): 2243 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/38673515/. DOI: 10.3390/jcm13082243.
[19]
MEHMOOD Z, ASSADI H, GRAFTON-CLARKE C, et al. Validation of 2D flow MRI for helical and vortical flows[J/OL]. Open Heart, 2024, 11(1): e002451 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/38458769/. DOI: 10.1136/openhrt-2023-002451.
[20]
XIONG F, EMRICH T, SCHOEPF U J, et al. Highly accelerated free-breathing real-time 2D flow imaging using compressed sensing and shared velocity encoding[J]. Eur Radiol, 2024, 34(3): 1692-1703. DOI: 10.1007/s00330-023-10157-6.
[21]
VAN HESPEN K M, KUIJF H J, HENDRIKSE J, et al. Blood flow velocity pulsatility and arterial diameter pulsatility measurements of the intracranial arteries using 4D PC-MRI[J]. Neuroinformatics, 2022, 20(2): 317-326. DOI: 10.1007/s12021-021-09526-7.
[22]
ROOS P R, RIJNBERG F M, WESTENBERG J J M, et al. Particle tracing based on 4D flow magnetic resonance imaging: a systematic review into methods, applications, and current developments[J]. J Magn Reson Imaging, 2023, 57(5): 1320-1339. DOI: 10.1002/jmri.28540.
[23]
RAMAEKERS M J F G, WESTENBERG J J M, ADRIAANS B P, et al. A clinician's guide to understanding aortic 4D flow MRI[J/OL]. Insights Imaging, 2023, 14(1): 114 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/37395817/. DOI: 10.1186/s13244-023-01458-x.
[24]
TAKAHASHI K, SEKINE T, ANDO T, et al. Utility of 4D flow MRI in thoracic aortic diseases: a literature review of clinical applications and current evidence[J]. Magn Reson Med Sci, 2022, 21(2): 327-339. DOI: 10.2463/mrms.rev.2021-0046.
[25]
BERTUETTI R, GRITTI P, PELOSI P, et al. How to use cerebral ultrasound in the ICU[J]. Minerva Anestesiol, 2020, 86(3): 327-340. DOI: 10.23736/S0375-9393.19.13852-7.
[26]
ZHOU M L, YU Y F, CHEN R Y, et al. Wall shear stress and its role in atherosclerosis[J/OL]. Front Cardiovasc Med, 2023, 10: 1083547 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/37077735/. DOI: 10.3389/fcvm.2023.1083547.
[27]
WANG J Q, PARITALA P K, MENDIETA J B, et al. Carotid bifurcation with tandem Stenosis-a patient-specific case study combined in vivo imaging, in vitro histology and in silico simulation[J/OL]. Front Bioeng Biotechnol, 2019, 7: 349 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/31824937/. DOI: 10.3389/fbioe.2019.00349.
[28]
MATSUMOTO M, TAKEGAHARA K, INOUE T, et al. 4D flow MR imaging reveals a decrease of left atrial blood flow in a patient with cardioembolic cerebral infarction after pulmonary left upper lobectomy[J]. Magn Reson Med Sci, 2020, 19(4): 290-293. DOI: 10.2463/mrms.ici.2019-0142.
[29]
CHEN D, WANG L D, JIANG T, et al. Flow shear force destabilizes carotid plaques by affecting CHOP and GRP78 proteins[J/OL]. J Stroke Cerebrovasc Dis, 2024, 33(9): 107851 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/38992405/. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107851.
[30]
CHO M, HWANG J S, KIM K R, et al. Wall shear stress (WSS) analysis in atherosclerosis in partial ligated apolipoprotein E knockout mouse model through computational fluid dynamics (CFD)[J/OL]. Int J Mol Sci, 2024, 25(18): 9877 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/39337364/. DOI: 10.3390/ijms25189877.
[31]
GALLO D, BIJARI P B, MORBIDUCCI U, et al. Segment-specific associations between local haemodynamic and imaging markers of early atherosclerosis at the carotid artery: an in vivo human study[J/OL]. J R Soc Interface, 2018, 15(147): 20180352 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/30305419/. DOI: 10.1098/rsif.2018.0352.
[32]
CHEN Z M, QIN H Q, LIU J, et al. Characteristics of wall shear stress and pressure of intracranial atherosclerosis analyzed by a computational fluid dynamics model: a pilot study[J/OL]. Front Neurol, 2020, 10: 1372 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/32010041/. DOI: 10.3389/fneur.2019.01372.
[33]
ZHANG G L, WANG Z X, ZHANG S, et al. Age and anatomical location related hemodynamic changes assessed by 4D flow MRI in the carotid arteries of healthy adults[J/OL]. Eur J Radiol, 2020, 128: 109035 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/32413676/. DOI: 10.1016/j.ejrad.2020.109035.
[34]
ZHANG G L, ZHANG S, QIN Y Y, et al. Differences in wall shear stress between high-risk and low-risk plaques in patients with moderate carotid artery stenosis: a 4D flow MRI study[J/OL]. Front Neurosci, 2021, 15: 678358 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/34456667/. DOI: 10.3389/fnins.2021.678358.
[35]
DAI C H, ZHAO P F, DING H Y, et al. Cerebral sinus hemodynamics in adults revealed by 4D flow MRI[J]. J Magn Reson Imaging, 2024, 60(4): 1706-1717. DOI: 10.1002/jmri.29210.
[36]
VALI A, ARISTOVA M, VAKIL P, et al. Semi-automated analysis of 4D flow MRI to assess the hemodynamic impact of intracranial atherosclerotic disease[J]. Magn Reson Med, 2019, 82(2): 749-762. DOI: 10.1002/mrm.27747.
[37]
HOLMGREN M, STØVERUD K H, ZARRINKOOB L, et al. Middle cerebral artery pressure laterality in patients with symptomatic ICA stenosis[J/OL]. PLoS One, 2021, 16(1): e0245337 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/33417614/. DOI: 10.1371/journal.pone.0245337.
[38]
ANDO T, SEKINE T, MURAI Y, et al. Multiparametric flow analysis using four-dimensional flow magnetic resonance imaging can detect cerebral hemodynamic impairment in patients with internal carotid artery stenosis[J]. Neuroradiology, 2020, 62(11): 1421-1431. DOI: 10.1007/s00234-020-02464-2.
[39]
ZARRINKOOB L, WÅHLIN A, AMBARKI K, et al. Blood flow lateralization and collateral compensatory mechanisms in patients with carotid artery stenosis[J]. Stroke, 2019, 50(5): 1081-1088. DOI: 10.1161/STROKEAHA.119.024757.
[40]
GIOTTA LUCIFERO A, BALDONCINI M, BRUNO N, et al. Shedding the light on the natural history of intracranial aneurysms: an updated overview[J/OL]. Medicina, 2021, 57(8): 742 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/34440948/. DOI: 10.3390/medicina57080742.
[41]
RAJABZADEH-OGHAZ H, SIDDIQUI A H, ASADOLLAHI A, et al. The association between hemodynamics and wall characteristics in human intracranial aneurysms: a review[J]. Neurosurg Rev, 2022, 45(1): 49-61. DOI: 10.1007/s10143-021-01554-w.
[42]
WANG H D, XU H D, FAN J S, et al. Predictive value of radiomics for intracranial aneurysm rupture: a systematic review and meta-analysis[J/OL]. Front Neurosci, 2024, 18: 1474780 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/39445076/. DOI: 10.3389/fnins.2024.1474780.
[43]
HAN P, JIN D S, WEI W, et al. The prognostic effects of hemodynamic parameters on rupture of intracranial aneurysm: a systematic review and meta-analysis[J/OL]. Int J Surg, 2021, 86: 15-23 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/33444872/. DOI: 10.1016/j.ijsu.2020.12.012.
[44]
AALBREGT E, RIJKEN L, NEDERVEEN A, et al. Quantitative magnetic resonance imaging to assess progression and rupture risk of aortic aneurysms: a scoping review[J/OL]. J Endovasc Ther, 2023: 15266028231204830 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/37853734/. DOI: 10.1177/15266028231204830.
[45]
TANAKA K, FURUKAWA K, ISHIDA F, et al. Hemodynamic differences of posterior communicating artery aneurysms between adult and fetal types of posterior cerebral artery[J]. Acta Neurochir, 2023, 165(12): 3697-3706. DOI: 10.1007/s00701-023-05840-y.
[46]
TANG Y D, WEI H N, ZHANG Z H, et al. Transition of intracranial aneurysmal wall enhancement from high to low wall shear stress mediation with size increase: a hemodynamic study based on 7T magnetic resonance imaging[J/OL]. Heliyon, 2024, 10(9): e30006 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/38694075/. DOI: 10.1016/j.heliyon.2024.e30006.
[47]
ZHANG M Z, LI Y J, ZHAO X, et al. Haemodynamic effects of stent diameter and compaction ratio on flow-diversion treatment of intracranial aneurysms: a numerical study of a successful and an unsuccessful case[J/OL]. J Biomech, 2017, 58: 179-186 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/28576622/. DOI: 10.1016/j.jbiomech.2017.05.001.
[48]
PERERA R, ISODA H, ISHIGURO K, et al. Assessing the risk of intracranial aneurysm rupture using morphological and hemodynamic biomarkers evaluated from magnetic resonance fluid dynamics and computational fluid dynamics[J]. Magn Reson Med Sci, 2020, 19(4): 333-344. DOI: 10.2463/mrms.mp.2019-0107.
[49]
CHEN Y, ZHANG Y, ZHOU Z C, et al. Hemodynamic parameters comparison between 4D Flow MRI and computational lfuid dynamics for intracranial aneurysms[J]. Chin J Magn Reson Imag, 2016, 7(8): 613-617. DOI: 10.12015/issn.1674-8034.2016.08.011.
[50]
PAHLAVIAN S H, WANG X H, MA S, et al. Cerebroarterial pulsatility and resistivity indices are associated with cognitive impairment and white matter hyperintensity in elderly subjects: a phase-contrast MRI study[J]. J Cereb Blood Flow Metab, 2021, 41(3): 670-683. DOI: 10.1177/0271678X20927101.
[51]
JEONG S K, ROSENSON R S. Shear rate specific blood viscosity and shear stress of carotid artery duplex ultrasonography in patients with lacunar infarction[J/OL]. BMC Neurol, 2013, 13: 36 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/23597083/. DOI: 10.1186/1471-2377-13-36.
[52]
CHEN Y L, YU H P, ZHU J Z, et al. Low carotid endothelial shear stress associated with cerebral small vessel disease in an older population: a subgroup analysis of a population-based prospective cohort study[J/OL]. Atherosclerosis, 2019, 288: 42-50 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/31323461/. DOI: 10.1016/j.atherosclerosis.2019.07.006.
[53]
HOOGEVEEN E S, ARKINK E B, VAN DER GROND J, et al. MRI evaluation of the relationship between carotid artery endothelial shear stress and brain white matter lesions in migraine[J]. J Cereb Blood Flow Metab, 2020, 40(5): 1040-1047. DOI: 10.1177/0271678X19857810.
[54]
VIKNER T, EKLUND A, KARALIJA N, et al. Cerebral arterial pulsatility is linked to hippocampal microvascular function and episodic memory in healthy older adults[J]. J Cereb Blood Flow Metab, 2021, 41(7): 1778-1790. DOI: 10.1177/0271678X20980652.
[55]
KAMADA H, OTA H, NAKAMURA M, et al. Quantification of Vortex flow in pulmonary arteries of patients with chronic thromboembolic pulmonary hypertension[J/OL]. Eur J Radiol, 2022, 148: 110142 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/35066341/. DOI: 10.1016/j.ejrad.2021.110142.
[56]
KAMADA H, OTA H, AOKI T, et al. 4D-flow MRI assessment of blood flow before and after endovascular intervention in a patient with pulmonary hypertension due to isolated pulmonary artery involvement in large vessel vasculitis[J]. Radiol Case Rep, 2019, 15(3): 190-194. DOI: 10.1016/j.radcr.2019.11.019.
[57]
KAMADA H, OTA H, NAKAMURA M, et al. Perioperative hemodynamic changes in the thoracic aorta in patients with aortic valve stenosis: a prospective serial 4D-flow MRI study[J]. Semin Thorac Cardiovasc Surg, 2020, 32(1): 25-34. DOI: 10.1053/j.semtcvs.2019.07.006.
[58]
ARMOUR C H, GUO B L, SAITTA S, et al. Evaluation and verification of patient-specific modelling of type B aortic dissection[J/OL]. Comput Biol Med, 2022, 140: 105053 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/34847383/. DOI: 10.1016/j.compbiomed.2021.105053.
[59]
WANG Q D, GUO X J, BROOKS M, et al. MRI in CFD for chronic type B aortic dissection: Ready for prime time?[J/OL]. Comput Biol Med, 2022, 150: 106138 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/36191393/. DOI: 10.1016/j.compbiomed.2022.106138.
[60]
STEFANOV F, SULTAN S, MORRIS L, et al. Computational fluid analysis of symptomatic chronic type B aortic dissections managed with the Streamliner Multilayer Flow Modulator[J]. J Vasc Surg, 2017, 65(4): 951-963. DOI: 10.1016/j.jvs.2016.07.135.
[61]
RIKHTEGAR NEZAMI F, ATHANASIOU L S, AMRUTE J M, et al. Multilayer flow modulator enhances vital organ perfusion in patients with type B aortic dissection[J/OL]. Am J Physiol Heart Circ Physiol, 2018, 315(5): H1182-H1193 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/30095992/. DOI: 10.1152/ajpheart.00199.2018.
[62]
OTA H, KAMADA H, HIGUCHI S, et al. Clinical application of 4D flow MR imaging to pulmonary hypertension[J]. Magn Reson Med Sci, 2022, 21(2): 309-318. DOI: 10.2463/mrms.rev.2021-0111.
[63]
BYRNE R A, FREMES S, CAPODANNO D, et al. 2022 Joint ESC/EACTS review of the 2018 guideline recommendations on the revascularization of left main coronary artery disease in patients at low surgical risk and anatomy suitable for PCI or CABG[J/OL]. Eur J Cardiothorac Surg, 2023, 64(2): ezad286 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/37632766/. DOI: 10.1093/ejcts/ezad286.
[64]
WU J J, YANG D W, ZHANG Y Q, et al. Non-invasive imaging innovation: FFR-CT combined with plaque characterization, safeguarding your cardiac health[J]. J Cardiovasc Comput Tomogr, 2025, 19(1): 152-158. DOI: 10.1016/j.jcct.2024.08.008.
[65]
TAKAGI H, IHDAYHID A R, LEIPSIC J A. Integration of fractional flow reserve derived from CT into clinical practice[J]. J Cardiol, 2023, 81(6): 577-585. DOI: 10.1016/j.jjcc.2023.02.002.
[66]
HOHRI Y, ITATANI K, YAMAZAKI S, et al. Computerized virtual surgery based on computational fluid dynamics simulation for planning coronary revascularization with aortic root replacement in adult congenital heart disease: a case report[J]. Gen Thorac Cardiovasc Surg, 2021, 69(4): 722-726. DOI: 10.1007/s11748-020-01517-w.
[67]
SUN H, LIU J C, FENG Y L, et al. Deep learning-based prediction of coronary artery stenosis resistance[J/OL]. Am J Physiol Heart Circ Physiol, 2022, 323(6): H1194-H1205 [2024-10-26]. https://pubmed.ncbi.nlm.nih.gov/36269648/. DOI: 10.1152/ajpheart.00269.2022.
[68]
LV L, LI H T, WU Z L, et al. An artificial intelligence-based platform for automatically estimating time-averaged wall shear stress in the ascending aorta[J]. Eur Heart J Digit Health, 2022, 3(4): 525-534. DOI: 10.1093/ehjdh/ztac058.
[69]
BUSTAMANTE M, VIOLA F, ENGVALL J, et al. Automatic time-resolved cardiovascular segmentation of 4D flow MRI using deep learning[J]. J Magn Reson Imaging, 2023, 57(1): 191-203. DOI: 10.1002/jmri.28221.

PREV Research progress in radiomics for qualitative diagnosis of thyroid nodules
NEXT Progress of cardiac magnetic resonance in the assessment of left ventricular remodeling after myocardial infarction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn