Share:
Share this content in WeChat
X
Review
Progress of cardiac magnetic resonance in the assessment of left ventricular remodeling after myocardial infarction
PAN Pian  LU Ji 

Cite this article as: PAN P, LU J. Progress of cardiac magnetic resonance in the assessment of left ventricular remodeling after myocardial infarction[J]. Chin J Magn Reson Imaging, 2025, 16(2): 179-184, 192. DOI:10.12015/issn.1674-8034.2025.02.029.


[Abstract] Adverse left ventricular remodeling (ALVR) after myocardial infarction (MI) is a pathological change in myocardial structure or function, which has a significant impact on the prognosis of patients. Heart failure (HF) after ALVR is the main cause of increased morbidity and mortality in myocardial infarction patients worldwide. At present, it has been confirmed that a variety of factors lead to the occurrence of ALVR after MI, among which inflammation is one of the important factors. Cardiac magnetic resonance (CMR) can provide information about the structure, function, perfusion, and tissue characteristics. It can provide important information related to patient prognosis through imaging evaluation and guide early monitoring and treatment of people at high risk of ALVR. In addition, as CMRs continue to evolve, multiple derived CMRs and their combination with artificial intelligence can predict clinical endpoints in prospective trials and evaluate the efficacy of certain drugs. This article reviews the pathophysiology of ALVR after MI, and explains how CMR can guide the treatment of clinical patients through its imaging markers and help clinical selection of new treatments.
[Keywords] myocardial infarction;adverse left ventricular remodeling;heart failure;magnetic resonance imaging;artificial intelligence;prognosis evaluation

PAN Pian1, 2   LU Ji1, 2*  

1 The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China

2 Department of Radiology, Yichang Central People's Hospital, Yichang 443000, China

Corresponding author: LU J, E-mail: 15926951408@163.com

Conflicts of interest   None.

Received  2024-11-12
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.029
Cite this article as: PAN P, LU J. Progress of cardiac magnetic resonance in the assessment of left ventricular remodeling after myocardial infarction[J]. Chin J Magn Reson Imaging, 2025, 16(2): 179-184, 192. DOI:10.12015/issn.1674-8034.2025.02.029.

[1]
MOSTERD A, HOES A W. Clinical epidemiology of heart failure[J]. Heart, 2007, 93(9): 1137-1146. DOI: 10.1136/hrt.2003.025270.
[2]
MARTIN S S, ADAY A W, ALMARZOOQ Z I, et al. 2024 heart disease and stroke statistics: a report of US and global data from the American heart association[J/OL]. Circulation, 2024, 149(8): e347-e913 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38264914/. DOI: 10.1161/CIR.0000000000001209.
[3]
ABRAMOV D, KOBO O, MOHAMED M, et al. Management and outcomes of acute myocardial infarction in patients with preexisting heart failure: an analysis of 2 million patients from the national inpatient sample[J]. Expert Rev Cardiovasc Ther, 2022, 20(3): 233-240. DOI: 10.1080/14779072.2022.2058931.
[4]
SAVARESE G, BECHER P M, LUND L H, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology[J]. Cardiovasc Res, 2023, 118(17): 3272-3287. DOI: 10.1093/cvr/cvac013.
[5]
CORRAL ACERO J, SCHUSTER A, ZACUR E, et al. Understanding and improving risk assessment after myocardial infarction using automated left ventricular shape analysis[J]. JACC Cardiovasc Imaging, 2022, 15(9): 1563-1574. DOI: 10.1016/j.jcmg.2021.11.027.
[6]
PRABHU S D, FRANGOGIANNIS N G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis[J]. Circ Res, 2016, 119(1): 91-112. DOI: 10.1161/CIRCRESAHA.116.303577.
[7]
FRANGOGIANNIS N G. Pathophysiology of myocardial infarction[J]. Compr Physiol, 2015, 5(4): 1841-1875. DOI: 10.1002/cphy.c150006.
[8]
HUANG S B, FRANGOGIANNIS N G. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges[J]. Br J Pharmacol, 2018, 175(9): 1377-1400. DOI: 10.1111/bph.14155.
[9]
MUSELLA F, LIBRERA M, SIBILIO G, et al. Cardiovascular magnetic resonance parametric techniques to characterize myocardial effects of anthracycline therapy in adults with normal left ventricular ejection fraction: a systematic review and meta-analysis[J/OL]. Curr Probl Cardiol, 2024, 49(7): 102609 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38697332/. DOI: 10.1016/j.cpcardiol.2024.102609.
[10]
REINDL M, LECHNER I, HOLZKNECHT M, et al. Cardiac magnetic resonance imaging versus computed tomography to guide transcatheter aortic valve replacement: a randomized, open-label, noninferiority trial[J]. Circulation, 2023, 148(16): 1220-1230. DOI: 10.1161/CIRCULATIONAHA.123.066498.
[11]
LANGE T, BACKHAUS S J, SCHULZ A, et al. Cardiovascular magnetic resonance-derived left atrioventricular coupling index and major adverse cardiac events in patients following acute myocardial infarction[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 24 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37046343/. DOI: 10.1186/s12968-023-00929-w.
[12]
MEIER C, EISENBLÄTTER M, GIELEN S. Myocardial late gadolinium enhancement (LGE) in cardiac magnetic resonance imaging (CMR)-an important risk marker for cardiac disease[J/OL]. J Cardiovasc Dev Dis, 2024, 11(2): 40 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38392254/. DOI: 10.3390/jcdd11020040.
[13]
GUO R, WEINGÄRTNER S, ŠIURYTĖ P, et al. Emerging techniques in cardiac magnetic resonance imaging[J]. J Magn Reson Imaging, 2022, 55(4): 1043-1059. DOI: 10.1002/jmri.27848.
[14]
BENZ D C, GRÄNI C, ANTIOCHOS P, et al. Cardiac magnetic resonance biomarkers as surrogate endpoints in cardiovascular trials for myocardial diseases[J]. Eur Heart J, 2023, 44(45): 4738-4747. DOI: 10.1093/eurheartj/ehad510.
[15]
DE LAZZARI M, CIPRIANI A, CECERE A, et al. Cardiac rupture in acute myocardial infarction: a cardiac magnetic resonance study[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(11): 1491-1500. DOI: 10.1093/ehjci/jead088.
[16]
MORONI A, TONDI L, MILANI V, et al. Left atrial remodeling in hypertrophic cardiomyopathy and Fabry disease: a CMR-based head-to-head comparison and outcome analysis[J/OL]. Int J Cardiol, 2023, 393: 131357 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37696360/. DOI: 10.1016/j.ijcard.2023.131357.
[17]
CHADALAVADA S, FUNG K, RAUSEO E, et al. Myocardial strain measured by cardiac magnetic resonance predicts cardiovascular morbidity and death[J]. J Am Coll Cardiol, 2024, 84(7): 648-659. DOI: 10.1016/j.jacc.2024.05.050.
[18]
WANG Y J, YANG K, WEN Y, et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging[J]. Nat Med, 2024, 30(5): 1471-1480. DOI: 10.1038/s41591-024-02971-2.
[19]
FRANTZ S, HUNDERTMARK M J, SCHULZ-MENGER J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies[J]. Eur Heart J, 2022, 43(27): 2549-2561. DOI: 10.1093/eurheartj/ehac223.
[20]
CHUDÝ M, GONCALVESOVÁ E. Prediction of left ventricular reverse remodelling: a mini review on clinical aspects[J]. Cardiology, 2022, 147(5/6): 521-528. DOI: 10.1159/000526986.
[21]
LEGALLOIS D, HODZIC A, ALEXANDRE J, et al. Definition of left ventricular remodelling following ST-elevation myocardial infarction: a systematic review of cardiac magnetic resonance studies in the past decade[J]. Heart Fail Rev, 2022, 27(1): 37-48. DOI: 10.1007/s10741-020-09975-3.
[22]
YAP J, IREI J, LOZANO-GERONA J, et al. Macrophages in cardiac remodelling after myocardial infarction[J]. Nat Rev Cardiol, 2023, 20(6): 373-385. DOI: 10.1038/s41569-022-00823-5.
[23]
LI Z Q, LIU X D, ZHANG X X, et al. TRIM21 aggravates cardiac injury after myocardial infarction by promoting M1 macrophage polarization[J/OL]. Front Immunol, 2022, 13: 1053171 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/36439111/. DOI: 10.3389/fimmu.2022.1053171.
[24]
THORP E B. Cardiac macrophages and emerging roles for their metabolism after myocardial infarction[J/OL]. J Clin Invest, 2023, 133(18): e171953 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37712418/. DOI: 10.1172/JCI171953.
[25]
ALGOET M, JANSSENS S, HIMMELREICH U, et al. Myocardial ischemia-reperfusion injury and the influence of inflammation[J]. Trends Cardiovasc Med, 2023, 33(6): 357-366. DOI: 10.1016/j.tcm.2022.02.005.
[26]
SUN M Y, MAO S, WU C, et al. Piezo1-mediated neurogenic inflammatory cascade exacerbates ventricular remodeling after myocardial infarction[J]. Circulation, 2024, 149(19): 1516-1533. DOI: 10.1161/CIRCULATIONAHA.123.065390.
[27]
CALVIERI C, RIVA A, STURLA F, et al. Left ventricular adverse remodeling in ischemic heart disease: emerging cardiac magnetic resonance imaging biomarkers[J/OL]. J Clin Med, 2023, 12(1): 334 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/36615133/. DOI: 10.3390/jcm12010334.
[28]
BEIJNINK C W H, VAN DER HOEVEN N W, KONIJNENBERG L S F, et al. Cardiac MRI to visualize myocardial damage after ST-segment elevation myocardial infarction: a review of its histologic validation[J]. Radiology, 2021, 301(1): 4-18. DOI: 10.1148/radiol.2021204265.
[29]
HASHIMOTO Y, SOEDA T, SENO A, et al. Reverse remodeling and non-contrast T1 hypointense infarct core in patients with reperfused acute myocardial infarction[J]. Circ J, 2022, 86(12): 1968-1979. DOI: 10.1253/circj.CJ-22-0479.
[30]
EYYUPKOCA F, KARAKUS G, GOK M, et al. Association of changes in the infarct and remote zone myocardial tissue with cardiac remodeling after myocardial infarction: a T1 and T2 mapping study[J]. Int J Cardiovasc Imaging, 2022, 38(2): 363-373. DOI: 10.1007/s10554-021-02490-y.
[31]
AQUARO G D, DE GORI C, FAGGIONI L, et al. Diagnostic and prognostic role of late gadolinium enhancement in cardiomyopathies[J/OL]. Eur Heart JSuppl, 2023, 25(Suppl C): C130-C136 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37125322/. DOI: 10.1093/eurheartjsupp/suad015.
[32]
ZHANG H, TIAN Z X, HUO H B, et al. Effect of infarct location and size on left atrial function: a cardiovascular magnetic resonance feature tracking study[J/OL]. J Clin Med, 2022, 11(23): 6938 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/36498513/. DOI: 10.3390/jcm11236938.
[33]
GEORGE M J, JASMIN N H, CUMMINGS V T, et al. Selective interleukin-6 trans-signaling blockade is more effective than panantagonism in reperfused myocardial infarction[J]. JACC Basic Transl Sci, 2021, 6(5): 431-443. DOI: 10.1016/j.jacbts.2021.01.013.
[34]
QIAN G, ZHANG Y, DONG W, et al. Effects of nicorandil administration on infarct size in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: the CHANGE trial[J/OL]. J Am Heart Assoc, 2022, 11(18): e026232 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/36073634/. DOI: 10.1161/JAHA.122.026232.
[35]
O'BRIEN A T, GIL K E, VARGHESE J, et al. T2 mapping in myocardial disease: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 33 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/35659266/. DOI: 10.1186/s12968-022-00866-0.
[36]
KONIJNENBERG L S F, ZUGWITZ D, EVERAARS H, et al. Effect of ticagrelor and prasugrel on remote myocardial inflammation in patients with acute myocardial infarction with ST-elevation: a CMR T1 and T2 mapping study[J]. Int J Cardiovasc Imaging, 2023, 39(4): 767-779. DOI: 10.1007/s10554-022-02765-y.
[37]
PANTOS C I, GRIGORIOU K P, TRIKAS A G, et al. Translating thyroid hormone into clinical practice: lessons learned from the post-hoc analysis on data available from the ThyRepair study[J/OL]. Front Endocrinol, 2024, 15: 1405251 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/39129922/. DOI: 10.3389/fendo.2024.1405251.
[38]
PILGRIM T, VOLLENBROICH R, DECKARM S, et al. Effect of paroxetine-mediated G-protein receptor kinase 2 inhibition vs placebo in patients with anterior myocardial infarction: a randomized clinical trial[J]. JAMA Cardiol, 2021, 6(10): 1171-1176. DOI: 10.1001/jamacardio.2021.2247.
[39]
BOYLE A J, SCHULTZ C, SELVANAYAGAM J B, et al. Calcium/calmodulin-dependent protein kinase II delta inhibition and ventricular remodeling after myocardial infarction: a randomized clinical trial[J]. JAMA Cardiol, 2021, 6(7): 762-768. DOI: 10.1001/jamacardio.2021.0676.
[40]
MONTALESCOT G, ALEXANDER J H, CEQUIER-FILLAT A, et al. Firibastat versus ramipril after acute mechanical reperfusion of anterior myocardial infarction: a phase 2 study[J]. Am J Cardiovasc Drugs, 2023, 23(2): 207-217. DOI: 10.1007/s40256-023-00567-8.
[41]
THAVENDIRANATHAN P, HOUBOIS C, MARWICK T H, et al. Statins to prevent early cardiac dysfunction in cancer patients at increased cardiotoxicity risk receiving anthracyclines[J]. Eur Heart J Cardiovasc Pharmacother, 2023, 9(6): 515-525. DOI: 10.1093/ehjcvp/pvad031.
[42]
WILK B, SMAILOVIC H, WISENBERG G, et al. Tracking the progress of inflammation with PET/MRI in a canine model of myocardial infarction[J]. J Nucl Cardiol, 2022, 29(3): 1315-1325. DOI: 10.1007/s12350-020-02487-5.
[43]
FLÖGEL U, TEMME S, JACOBY C, et al. Multi-targeted 1H/19F MRI unmasks specific danger patterns for emerging cardiovascular disorders[J/OL]. Nat Commun, 2021, 12(1): 5847 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/34615876/. DOI: 10.1038/s41467-021-26146-6.
[44]
BECKER K, DING Z P, BOUVAIN P, et al. Inflammatory stimuli impact on cellular uptake and biodistribution of perfluorocarbon nanoemulsions[J/OL]. J Leukoc Biol, 2024: qiae199 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/39283955/. DOI: 10.1093/jleuko/qiae199.
[45]
NIENHAUS F, WALZ M, ROTHE M, et al. Quantitative assessment of angioplasty-induced vascular inflammation with 19F cardiovascular magnetic resonance imaging[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 54 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37784080/. DOI: 10.1186/s12968-023-00964-7.
[46]
APPS A, LAU J, PETERZAN M, et al. Hyperpolarised magnetic resonance for in vivo real-time metabolic imaging[J]. Heart, 2018, 104(18): 1484-1491. DOI: 10.1136/heartjnl-2017-312356.
[47]
FLOCKE V, TEMME S, BOUVAIN P, et al. Noninvasive assessment of metabolic turnover during inflammation by in vivo deuterium magnetic resonance spectroscopy[J/OL]. Front Immunol, 2023, 14: 1258027 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37841266/. DOI: 10.3389/fimmu.2023.1258027.
[48]
FUETTERER M, TRAECHTLER J, BUSCH J, et al. Hyperpolarized metabolic and parametric CMR imaging of longitudinal metabolic-structural changes in experimental chronic infarction[J]. JACC Cardiovasc Imag, 2022, 15(12): 2051-2064. DOI: 10.1016/j.jcmg.2022.08.017.
[49]
KHALIQUE Z, FERREIRA P F, SCOTT A D, et al. Diffusion tensor cardiovascular magnetic resonance in cardiac amyloidosis[J/OL]. Circ Cardiovasc Imaging, 2020, 13(5): e009901 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/32408830/. DOI: 10.1161/CIRCIMAGING.119.009901.
[50]
KHALIQUE Z, FERREIRA P F, SCOTT A D, et al. Diffusion tensor cardiovascular magnetic resonance imaging: a clinical perspective[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1235-1255. DOI: 10.1016/j.jcmg.2019.07.016.
[51]
MAZUR W, URBAŃCZYK-ZAWADZKA M, CZYŻ Ł, et al. Diffusion-tensor magnetic resonance imaging of the human heart in health and in acute myocardial infarction using diffusion-weighted echo-planar imaging technique with spin-echo signals[J]. Postepy Kardiol Interwencyjnej, 2022, 18(4): 416-422. DOI: 10.5114/aic.2022.121344.
[52]
SHARRACK N, DAS A, KELLY C, et al. The relationship between myocardial microstructure and strain in chronic infarction using cardiovascular magnetic resonance diffusion tensor imaging and feature tracking[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 66 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/36419059/. DOI: 10.1186/s12968-022-00892-y.
[53]
DAS A, KELLY C, TEH I, et al. Pathophysiology of LV remodeling following STEMI: a longitudinal diffusion tensor CMR study[J]. JACC Cardiovasc Imaging, 2023, 16(2): 159-171. DOI: 10.1016/j.jcmg.2022.04.002.
[54]
HUANG J H, FERREIRA P F, WANG L C, et al. Deep learning-based diffusion tensor cardiac magnetic resonance reconstruction: a comparison study[J/OL]. Sci Rep, 2024, 14: 5658 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/38454072/. DOI: 10.1038/s41598-024-55880-2.
[55]
ZHANG Q, BURRAGE M K, SHANMUGANATHAN M, et al. Artificial intelligence for contrast-free MRI: scar assessment in myocardial infarction using deep learning-based virtual native enhancement[J]. Circulation, 2022, 146(20): 1492-1503. DOI: 10.1161/CIRCULATIONAHA.122.060137.
[56]
CHEN Z H, LALANDE A, SALOMON M, et al. Automatic deep learning-based myocardial infarction segmentation from delayed enhancement MRI[J/OOL]. Comput Med Imaging Graph, 2022, 95: 102014 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/34864579/. DOI: 10.1016/j.compmedimag.2021.102014.
[57]
LECESNE E, SIMON A, GARREAU M, et al. Segmentation of cardiac infarction in delayed-enhancement MRI using probability map and transformers-based neural networks[J/OL]. Comput Meth Programs Biomed, 2023, 242: 107841 [2024-11-11]. https://pubmed.ncbi.nlm.nih.gov/37865006/. DOI: 10.1016/j.cmpb.2023.107841.

PREV Application of blood flow analysis method based on computational fluid dynamics and 4D Flow MRI in diagnosis and treatment of cardiovascular and cerebrovascular diseases
NEXT Application and research progress of MRI radiomics in brain metastases from lung cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn