Share:
Share this content in WeChat
X
Review
Application and research progress of MRI radiomics in brain metastases from lung cancer
SUI Lianyu  MENG Huan  WANG Jianing  YIN Xiaoping 

Cite this article as: SUI L Y, MENG H, WANG J N, et al. Application and research progress of MRI radiomics in brain metastases from lung cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 185-192. DOI:10.12015/issn.1674-8034.2025.02.030.


[Abstract] Brain metastases (BMs) are the most prevalent intracranial malignancies, with lung cancer BMs being particularly common in clinical practice, closely associated with the poor prognosis and high mortality of lung cancer. Therefore, precise diagnosis and treatment of lung cancer BMs are of paramount importance for their clinical management. Magnetic resonance imaging (MRI) has been widely regarded as the imaging gold standard for the diagnosis and prognosis assessment of BMs due to its high sensitivity and specificity. MRI radiomics enables a more detailed characterization of the internal structure and heterogeneity of tumors through high-throughput feature extraction methods. The quantitative imaging features extracted from MRI are closely related to the biological behavior and clinical prognosis of tumors, providing clinicians with richer decision-support information to enhance the accuracy of diagnosis and personalization of treatment. Recent studies have shown that MRI radiomics demonstrates great potential in improving the accuracy and efficiency of clinicians in diagnosing, classifying, treating, and predicting the prognosis of lung cancer BMs. This article aims to comprehensively summarize the latest applications of MRI radiomics in lung cancer BMs in terms of data segmentation processing and model establishment, in order to provide insights for research in this emerging field.
[Keywords] brain metastases;lung cancer;magnetic resonance imaging;radiomics;deep learning;artificial intelligence

SUI Lianyu1   MENG Huan1   WANG Jianing1   YIN Xiaoping1, 2*  

1 Clinical Medicine School of Hebei University/Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China

2 Department of Radiology, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, the Affiliated Hospital of Hebei University, Baoding 071000, China

Corresponding author: YIN X P, E-mail: yinxiaoping78@sina.com

Conflicts of interest   None.

Received  2024-10-22
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.030
Cite this article as: SUI L Y, MENG H, WANG J N, et al. Application and research progress of MRI radiomics in brain metastases from lung cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 185-192. DOI:10.12015/issn.1674-8034.2025.02.030.

[1]
ACHROL A S, RENNERT R C, ANDERS C, et al. Brain metastases[J/OL]. Nat Rev Dis Primers, 2019, 5(1): 5 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/30655533/. DOI: 10.1038/s41572-018-0055-y.
[2]
LAMBA N, WEN P Y, AIZER A A. Epidemiology of brain metastases and leptomeningeal disease[J]. Neuro Oncol, 2021, 23(9): 1447-1456. DOI: 10.1093/neuonc/noab101.
[3]
SUNG K S. Clinical practice guidelines for brain metastasis from solid tumors[J]. Brain Tumor Res Treat, 2024, 12(1): 14-22. DOI: 10.14791/btrt.2023.0049.
[4]
Chinese Association for Clinical Oncologists, Medical Oncology Branch of Chinese International Exchange and Promotion Association for Medical and Healthcare. Clinical practice guideline for brain metastases of lung cancer in China (2021 version)[J]. Chin J Oncol, 2021, 43(3): 269-281. DOI: 10.3760/cma.j.cn112152-20210104-00009.
[5]
CAI L, ZHU C X, ZHANG X L, et al. Interpretation of global lung cancer statistics[J]. Chin J Epidemiol, 2024, 45(4): 585-590. DOI: 10.3760/cma.j.cn112338-20230920-00172.
[6]
YOTSUKURA M, YASUDA H, SHIGENOBU T, et al. Clinical and pathological characteristics of EGFR mutation in operable early-stage lung adenocarcinoma[J/OL]. Lung Cancer, 2017, 109: 45-51 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/28577949/. DOI: 10.1016/j.lungcan.2017.04.014.
[7]
DERKS S H A E, VAN DER VELDT A A M, SMITS M. Brain metastases: the role of clinical imaging[J/OL]. Br J Radiol, 2022, 95(1130): 20210944 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/34808072/. DOI: 10.1259/bjr.20210944.
[8]
KHALIGHI S, REDDY K, MIDYA A, et al. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment[J/OL]. NPJ Precis Oncol, 2024, 8(1): 80 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38553633/. DOI: 10.1038/s41698-024-00575-0.
[9]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[10]
RUDIE J D, RAUSCHECKER A M, NICK BRYAN R, et al. Emerging applications of artificial intelligence in neuro-oncology[J]. Radiology, 2019, 290(3): 607-618. DOI: 10.1148/radiol.2018181928.
[11]
CHEN T, HU L T, LU Q, et al. A computer-aided diagnosis system for brain tumors based on artificial intelligence algorithms[J/OL]. Front Neurosci, 2023, 17: 1120781 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/37483342/. DOI: 10.3389/fnins.2023.1120781.
[12]
ALI T M, NAWAZ A, REHMAN A U, et al. A sequential machine learning-cum-attention mechanism for effective segmentation of brain tumor[J/OL]. Front Oncol, 2022, 12: 873268 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/35719987/. DOI: 10.3389/fonc.2022.873268.
[13]
LUO X, YANG Y D, YIN S H, et al. Automated segmentation of brain metastases with deep learning: a multi-center, randomized crossover, multi-reader evaluation study[J]. Neuro Oncol, 2024, 26(11): 2140-2151. DOI: 10.1093/neuonc/noae113.
[14]
DIKICI E, RYU J L, DEMIRER M, et al. Automated brain metastases detection framework for T1-weighted contrast-enhanced 3D MRI[J]. IEEE J Biomed Health Inform, 2020, 24(10): 2883-2893. DOI: 10.1109/JBHI.2020.2982103.
[15]
AMEMIYA S, TAKAO H, KATO S, et al. Feature-fusion improves MRI single-shot deep learning detection of small brain metastases[J]. J Neuroimaging, 2022, 32(1): 111-119. DOI: 10.1111/jon.12916.
[16]
LIU H B, NI Z Z, NIE D, et al. Multimodal brain tumor segmentation boosted by monomodal normal brain images[J/OL]. IEEE Trans Image Process, 2024, 33: 1199-1210 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38315584/. DOI: 10.1109/TIP.2024.3359815.
[17]
LÜ J B, QI X, CHEN Z G, et al. Research progress of MRI based radiomics in differentiating high-grade gliomas from solitary brain metastases[J]. Chin J Magn Reson Imag, 2021, 12(6): 108-110. DOI: 10.12015/issn.1674-8034.2021.06.022.
[18]
TOMASZEWSKI M R, GILLIES R J. The biological meaning of radiomic features[J]. Radiology, 2021, 298(3): 505-516. DOI: 10.1148/radiol.2021202553.
[19]
ALSABBAGH R, AHMED M, ALQUDAH M A Y, et al. Insights into the molecular mechanisms mediating extravasation in brain metastasis of breast cancer, melanoma, and lung cancer[J/OL]. Cancers, 2023, 15(8): 2258 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/37190188/. DOI: 10.3390/cancers15082258.
[20]
ORTIZ-RAMÓN R, LARROZA A, RUIZ-ESPAÑA S, et al. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study[J]. Eur Radiol, 2018, 28(11): 4514-4523. DOI: 10.1007/s00330-018-5463-6.
[21]
KNIEP H C, MADESTA F, SCHNEIDER T, et al. Radiomics of brain MRI: utility in prediction of metastatic tumor type[J]. Radiology, 2019, 290(2): 479-487. DOI: 10.1148/radiol.2018180946.
[22]
MAHMOODIFAR S, PANGAL D J, NEMAN J, et al. Comparative analysis of the spatial distribution of brain metastases across several primary cancers using machine learning and deep learning models[J]. J Neurooncol, 2024, 167(3): 501-508. DOI: 10.1007/s11060-024-04630-5.
[23]
SASAKI T, KUNO H, HIYAMA T, et al. 2021 WHO classification of lung cancer: molecular biology research and radiologic-pathologic correlation[J/OL]. Radiographics, 2024, 44(3): e230136 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38358935/. DOI: 10.1148/rg.230136.
[24]
LE RHUN E, GUCKENBERGER M, SMITS M, et al. EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours[J]. Ann Oncol, 2021, 32(11): 1332-1347. DOI: 10.1016/j.annonc.2021.07.016.
[25]
CAO G Q, ZHANG J, LEI X Y, et al. Differentiating primary tumors for brain metastasis with integrated radiomics from multiple imaging modalities[J/OL]. Dis Markers, 2022, 2022: 5147085 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/36199819/. DOI: 10.1155/2022/5147085.
[26]
WU P, HAN Y X, ZHANG H, et al. Differentiating brain metastases from different pathological types of lung cancers using radiomic[J]. J Clin Radiol, 2021, 40(5): 844-849. DOI: 10.13437/j.cnki.jcr.2021.05.003.
[27]
LI R, GE Y Q, ZHANG M Z, et al. Identification of pathological types of brain metastasis from lung cancer based on whole tumor region MRI texture analysis[J]. Radiol Pract, 2021, 36(2): 176-180. DOI: 10.13609/j.cnki.1000-0313.2021.02.006.
[28]
ZHANG J, JIN J B, AI Y, et al. Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images[J]. Eur Radiol, 2021, 31(2): 1022-1028. DOI: 10.1007/s00330-020-07183-z.
[29]
VAN DER LAAK J, LITJENS G, CIOMPI F. Deep learning in histopathology: the path to the clinic[J]. Nat Med, 2021, 27(5): 775-784. DOI: 10.1038/s41591-021-01343-4.
[30]
TANDEL G S, TIWARI A, KAKDE O G. Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification[J/OL]. Comput Biol Med, 2021, 135: 104564 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/34217980/. DOI: 10.1016/j.compbiomed.2021.104564.
[31]
KANAVATI F, TOYOKAWA G, MOMOSAKI S, et al. Weakly-supervised learning for lung carcinoma classification using deep learning[J/OL]. Sci Rep, 2020, 10(1): 9297 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/32518413/. DOI: 10.1038/s41598-020-66333-x.
[32]
GROSSMAN R, HAIM O, ABRAMOV S, et al. Differentiating small-cell lung cancer from non-small-cell lung cancer brain metastases based on MRI using efficientnet and transfer learning approach[J/OL]. Technol Cancer Res Treat, 2021, 20: 15330338211004919 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/34030542/. DOI: 10.1177/15330338211004919.
[33]
LI Y T, YU R Z, CHANG H, et al. Identifying pathological subtypes of brain metastasis from lung cancer using MRI-based deep learning approach: a multicenter study[J]. J Imaging Inform Med, 2024, 37(3): 976-987. DOI: 10.1007/s10278-024-00988-0.
[34]
JIANG Y M, ZHANG Z C, WANG W, et al. Biology-guided deep learning predicts prognosis and cancer immunotherapy response[J/OL]. Nat Commun, 2023, 14(1): 5135 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/37612313/. DOI: 10.1038/s41467-023-40890-x.
[35]
MACEACHERN S J, FORKERT N D. Machine learning for precision medicine[J]. Genome, 2021, 64(4): 416-425. DOI: 10.1139/gen-2020-0131.
[36]
GE M X, ZHUANG Y J, ZHOU X L, et al. High probability and frequency of EGFR mutations in non-small cell lung cancer with brain metastases[J]. J Neurooncol, 2017, 135(2): 413-418. DOI: 10.1007/s11060-017-2590-x.
[37]
AHN S J, KWON H, YANG J J, et al. Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer[J/OL]. Sci Rep, 2020, 10(1): 8905 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/32483122/. DOI: 10.1038/s41598-020-65470-7.
[38]
WANG G Y, WANG B M, WANG Z, et al. Radiomics signature of brain metastasis: prediction of EGFR mutation status[J]. Eur Radiol, 2021, 31(7): 4538-4547. DOI: 10.1007/s00330-020-07614-x.
[39]
LI B X, PENG Y Q, QIN W F, et al. A MRI-Radiomics-based model predicts EGFR mutation status in brain metastases in lung cancer patients[J]. Chin J Magn Reson Imag, 2024, 15(3): 86-92. DOI: 10.12015/issn.1674-8034.2024.03.015.
[40]
ZHANG Y F, CHEN J J, YANG C, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using diffusion-weighted imaging-based habitat imaging[J]. Eur Radiol, 2024, 34(5): 3215-3225. DOI: 10.1007/s00330-023-10339-2.
[41]
CAO R, PANG Z Y, WANG X Y, et al. Radiomics evaluates the EGFR mutation status from the brain metastasis: a multi-center study[J/OL]. Phys Med Biol, 2022, 67(12): 125003 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/35588722/. DOI: 10.1088/1361-6560/ac7192.
[42]
FAN Y, ZHAO Z L, WANG X L, et al. Correction to: Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface[J]. Radiol Med, 2023, 128(3): 381-382. DOI: 10.1007/s11547-022-01585-3.
[43]
YANG C N, FAN Y, ZHAO D, et al. Habitat-based radiomics for predicting EGFR mutations in exon 19 and 21 from brain metastasis[J]. Acad Radiol, 2024, 31(9): 3764-3773. DOI: 10.1016/j.acra.2024.03.016.
[44]
LI Y, LV X N, CHEN C C, et al. A deep learning model integrating multisequence MRI to predict EGFR mutation subtype in brain metastases from non-small cell lung cancer[J/OL]. Eur Radiol Exp, 2024, 8(1): 2 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38169047/. DOI: 10.1186/s41747-023-00396-z.
[45]
LADBURY C, PENNOCK M, YILMAZ T, et al. Stereotactic radiosurgery in the management of brain metastases: a case-based radiosurgery society practice guideline[J/OL]. Adv Radiat Oncol, 2023, 9(3): 101402 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38292892/. DOI: 10.1016/j.adro.2023.101402.
[46]
VOGELBAUM M A, BROWN P D, MESSERSMITH H, et al. Treatment for brain metastases: ASCO-SNO-ASTRO guideline[J]. J Clin Oncol, 2022, 40(5): 492-516. DOI: 10.1200/JCO.21.02314.
[47]
HUANG C Y, LEE C C, YANG H C, et al. Radiomics as prognostic factor in brain metastases treated with Gamma Knife radiosurgery[J]. J Neurooncol, 2020, 146(3): 439-449. DOI: 10.1007/s11060-019-03343-4.
[48]
WANG H S, XUE J Y, QU T X, et al. Predicting local failure of brain metastases after stereotactic radiosurgery with radiomics on planning MR images and dose maps[J]. Med Phys, 2021, 48(9): 5522-5530. DOI: 10.1002/mp.15110.
[49]
JALALIFAR S A, SOLIMAN H, SAHGAL A, et al. Predicting the outcome of radiotherapy in brain metastasis by integrating the clinical and MRI-based deep learning features[J]. Med Phys, 2022, 49(11): 7167-7178. DOI: 10.1002/mp.15814.
[50]
KANAKARAJAN H, DE BAENE W, HANSSENS P, et al. Predicting local control of brain metastases after stereotactic radiotherapy with clinical, radiomics and deep learning features[J/OL]. Radiat Oncol, 2024, 19(1): 182 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/39736796/. DOI: 10.1186/s13014-024-02573-9.
[51]
MOURAVIEV A, DETSKY J, SAHGAL A, et al. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery[J]. Neuro Oncol, 2020, 22(6): 797-805. DOI: 10.1093/neuonc/noaa007.
[52]
CHO S J, CHO W, CHOI D, et al. Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data[J/OL]. Sci Rep, 2024, 14(1): 11085 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38750084/. DOI: 10.1038/s41598-024-60781-5.
[53]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[54]
HONG Y Z, MAO Y H, KOU L W, et al. Microenvironmental response and new treatment modalities in brain metastasis[J]. Chin J Cell Biol, 2022, 44(4): 551-558. DOI: 10.11844/cjcb.2022.04.0003.
[55]
QU J, ZHANG T, ZHANG X, et al. MRI radiomics for predicting intracranial progression in non-small-cell lung cancer patients with brain metastases treated with epidermal growth factor receptor tyrosine kinase inhibitors[J/OL]. Clin Radiol, 2024, 79(4): e582-e591 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38310058/. DOI: 10.1016/j.crad.2024.01.005.
[56]
QI H, HOU Y, ZHENG Z, et al. MRI radiomics predicts the efficacy of EGFR-TKI in EGFR-mutant non-small-cell lung cancer with brain metastasis[J]. Clin Radiol, 2024, 79(7): 515-525. DOI: 10.1016/j.crad.2024.02.016.
[57]
QI H R, HOU Y C, ZHENG Z H, et al. Clinical characteristics and MRI based radiomics nomograms can predict iPFS and short-term efficacy of third-generation EGFR-TKI in EGFR-mutated lung adenocarcinoma with brain metastases[J/OL]. BMC Cancer, 2024, 24(1): 362 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38515096/. DOI: 10.1186/s12885-024-12121-z.
[58]
WANG T W, CHAO H S, CHIU H Y, et al. Radiomics of metastatic brain tumor as a predictive image biomarker of progression-free survival in patients with non-small-cell lung cancer with brain metastasis receiving tyrosine kinase inhibitors[J/OL]. Transl Oncol, 2024, 39: 101826 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/37984256/. DOI: 10.1016/j.tranon.2023.101826.
[59]
ZHANG X P, ZHANG G J, QIU X T, et al. Exploring non-invasive precision treatment in non-small cell lung cancer patients through deep learning radiomics across imaging features and molecular phenotypes[J/OL]. Biomark Res, 2024, 12(1): 12 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38273398/. DOI: 10.1186/s40364-024-00561-5.

PREV Progress of cardiac magnetic resonance in the assessment of left ventricular remodeling after myocardial infarction
NEXT Research progress on artificial intelligence in MRI for breast cancer diagnosis and treatment response prediction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn