Share:
Share this content in WeChat
X
Review
Research progress on artificial intelligence in MRI for breast cancer diagnosis and treatment response prediction
SUN Shaomei  WANG Ruolan  BI Chengliu  LI Qinqing  YANG Jun 

Cite this article as: SUN S M, WANG R L, BI C L, et al. Research progress on artificial intelligence in MRI for breast cancer diagnosis and treatment response prediction[J]. Chin J Magn Reson Imaging, 2025, 16(2): 193-197, 228. DOI:10.12015/issn.1674-8034.2025.02.031.


[Abstract] Breast cancer seriously endangers the life and health of women. The key to improve the survival rate and quality of life of the breast cancer patients are accurate and efficient diagnoses and treatment strategies. In recent years, the research of artificial intelligence (AI) based on breast MRI has made remarkable progress in early diagnosis, accurate treatment and prognosis evaluation. This review summarizes the research progress of AI MRI in differentiation of benign and malignant breast lesions, breast cancer molecular classification, quantitative evaluation of breast background parenchyma enhancement, prediction of axillary lymph node status, prognosis and recurrence prediction in recent years. Simultaneously, the current limitations and challenges are presented to provide a reference for optimizing diagnostic and treatment strategies and promoting the development of AI technology based on breast MRI.
[Keywords] breast cancer;magnetic resonance imaging;artificial intelligence;deep learning;radiomics;diagnose;prognosis

SUN Shaomei   WANG Ruolan   BI Chengliu   LI Qinqing   YANG Jun*  

Department of Radiology, Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China

Corresponding author: YANG J, E-mail: imdyang@163.com

Conflicts of interest   None.

Received  2024-10-29
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.031
Cite this article as: SUN S M, WANG R L, BI C L, et al. Research progress on artificial intelligence in MRI for breast cancer diagnosis and treatment response prediction[J]. Chin J Magn Reson Imaging, 2025, 16(2): 193-197, 228. DOI:10.12015/issn.1674-8034.2025.02.031.

[1]
GIAQUINTO A N, SUNG H, MILLER K D, et al. Breast cancer statistics, 2022[J]. CA A Cancer J Clin, 2022, 72(6): 524-541. DOI: 10.3322/caac.21754.
[2]
IQBAL M J, JAVED Z, SADIA H, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future[J/OL]. Cancer Cell Int, 2021, 21(1): 270 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/34020642/. DOI: 10.1186/s12935-021-01981-1.
[3]
DIN N M U, DAR R A, RASOOL M, et al. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead[J/OL]. Comput Biol Med, 2022, 149: 106073 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/36103745/. DOI: 10.1016/j.compbiomed.2022.106073.
[4]
CHEN X X, WANG X M, ZHANG K, et al. Recent advances and clinical applications of deep learning in medical image analysis[J/OL]. Med Image Anal, 2022, 79: 102444 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/35472844/. DOI: 10.1016/j.media.2022.102444.
[5]
JIANG Y L, EDWARDS A V, NEWSTEAD G M. Artificial intelligence applied to breast MRI for improved diagnosis[J]. Radiology, 2021, 298(1): 38-46. DOI: 10.1148/radiol.2020200292.
[6]
XIE X Y, ZHOU H W, MA M Z, et al. A deep learning model for predicting molecular subtype of breast cancer by fusing multiple sequences of DCE-MRI from two institutes[J]. Acad Radiol, 2024, 31(9): 3479-3488. DOI: 10.1016/j.acra.2024.03.002.
[7]
YU Y F, TAN Y J, XIE C M, et al. Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer[J/OL]. JAMA Netw Open, 2020, 3(12): e2028086 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/33289845/. DOI: 10.1001/jamanetworkopen.2020.28086.
[8]
ZHANG J D, CUI Z M, ZHOU L P, et al. Breast fibroglandular tissue segmentation for automated BPE quantification with iterative cycle-consistent semi-supervised learning[J]. IEEE Trans Med Imaging, 2023, 42(12): 3944-3955. DOI: 10.1109/TMI.2023.3319646.
[9]
TAHMASSEBI A, WENGERT G J, HELBICH T H, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Invest Radiol, 2019, 54(2): 110-117. DOI: 10.1097/RLI.0000000000000518.
[10]
MD S T S, MD S A C, MD A L, et al. Deep learning k-space-to-image reconstruction facilitates high spatial resolution and scan time reduction in diffusion-weighted imaging breast MRI[J]. J Magn Reson Imag, 2024, 60(3): 1190-1200. DOI: 10.1002/jmri.29139.
[11]
BI W L, HOSNY A, SCHABATH M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. DOI: 10.3322/caac.21552.
[12]
MANN R M, KUHL C K, MOY L. Contrast-enhanced MRI for breast cancer screening[J]. J Magn Reson Imaging, 2019, 50(2): 377-390. DOI: 10.1002/jmri.26654.
[13]
TRUHN D, SCHRADING S, HAARBURGER C, et al. Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI[J]. Radiology, 2019, 290(2): 290-297. DOI: 10.1148/radiol.2018181352.
[14]
ZHOU J J, ZHANG Y, CHANG K T, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue[J]. J Magn Reson Imaging, 2020, 51(3): 798-809. DOI: 10.1002/jmri.26981.
[15]
WITOWSKI J, HEACOCK L, REIG B, et al. Improving breast cancer diagnostics with deep learning for MRI[J/OL]. Sci Transl Med, 2022, 14(664): eabo4802 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/36170446/. DOI: 10.1126/scitranslmed.abo4802.
[16]
BAE M S. Impact of molecular subtype definitions on AI classification of breast cancer at MRI[J/OL]. Radiology, 2023, 307(1): e223041 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/36594840/. DOI: 10.1148/radiol.223041.
[17]
HA R, MUTASA S, KARCICH J, et al. Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm[J]. J Digit Imaging, 2019, 32(2): 276-282. DOI: 10.1007/s10278-019-00179-2.
[18]
HUANG Y, WANG X X, CAO Y, et al. Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis[J]. Diagn Interv Imaging, 2024, 105(5): 191-205. DOI: 10.1016/j.diii.2024.01.004.
[19]
GOLDHIRSCH A, WOOD W C, COATES A S, et al. Strategies for subtypes: dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011[J]. Ann Oncol, 2011, 22(8): 1736-1747. DOI: 10.1093/annonc/mdr304.
[20]
JI Y, WHITNEY H M, LI H, et al. Differences in molecular subtype reference standards impact AI-based breast cancer classification with dynamic contrast-enhanced MRI[J/OL]. Radiology, 2023, 307(1): e220984 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/36594836/. DOI: 10.1148/radiol.220984.
[21]
NOWAKOWSKA S, BORKOWSKI K, RUPPERT C M, et al. Generalizable attention U-Net for segmentation of fibroglandular tissue and background parenchymal enhancement in breast DCE-MRI[J/OL]. Insights Imaging, 2023, 14(1): 185 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37932462/. DOI: 10.1186/s13244-023-01531-5.
[22]
HA R, CHANG P, MEMA E, et al. Fully automated convolutional neural network method for quantification of breast MRI fibroglandular tissue and background parenchymal enhancement[J]. J Digit Imaging, 2019, 32(1): 141-147. DOI: 10.1007/s10278-018-0114-7.
[23]
BOKACHEVA L. Automated background parenchymal enhancement measurements at MRI to predict breast cancer risk[J/OL]. Radiology, 2023, 308(3): e231765 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37750769/. DOI: 10.1148/radiol.231765.
[24]
THOMPSON C M, MALLAWAARACHCHI I, DWIVEDI D K, et al. The association of background parenchymal enhancement at breast MRI with breast cancer: a systematic review and meta-analysis[J]. Radiology, 2019, 292(3): 552-561. DOI: 10.1148/radiol.2019182441.
[25]
WATT G P, THAKRAN S, SUNG J S, et al. Association of breast cancer odds with background parenchymal enhancement quantified using a fully automated method at MRI: the IMAGINE study[J/OL]. Radiology, 2023, 308(3): e230367 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37750771/. DOI: 10.1148/radiol.230367.
[26]
MÜLLER-FRANZES G, KHADER F, TAYEBI ARASTEH S, et al. Intraindividual comparison of different methods for automated BPE assessment at breast MRI: a call for standardization[J/OL]. Radiology, 2024, 312(1): e232304 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/39012249/. DOI: 10.1148/radiol.232304.
[27]
WANG A, ZHAO S Q, ZHANG M Y, et al. Research progress of preoperative magnetic resonance imaging techniques in axillary lymph node metastasis of breast cancer[J]. Chin J Magn Reson Imag, 2024, 15(9): 183-188. DOI: 10.12015/issn.1674-8034.2024.09.032s.
[28]
YU Y F, HE Z F, OUYANG J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study[J/OL]. EBioMedicine, 2021, 69: 103460 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/34233259/. DOI: 10.1016/j.ebiom.2021.103460.
[29]
WANG Q, LIN Y Y, DING C, et al. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography[J]. Eur Radiol, 2024, 34(9): 6121-6131. DOI: 10.1007/s00330-024-10638-2.
[30]
GALIMBERTI V, COLE B F, VIALE G, et al. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial[J]. Lancet Oncol, 2018, 19(10): 1385-1393. DOI: 10.1016/S1470-2045(18)30380-2.
[31]
CHEN M Z, KONG C L, LIN G H, et al. Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study[J/OL]. EClinicalMedicine, 2023, 63: 102176 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37662514/. DOI: 10.1016/j.eclinm.2023.102176.
[32]
EUN N L, KANG D, SON E J, et al. Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2020, 294(1): 31-41. DOI: 10.1148/radiol.2019182718.
[33]
GUARNERI V, GRIGUOLO G, MIGLIETTA F, et al. Survival after neoadjuvant therapy with trastuzumab-lapatinib and chemotherapy in patients with HER2-positive early breast cancer: a meta-analysis of randomized trials[J/OL]. ESMO Open, 2022, 7(2): 100433 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/35276440/. DOI: 10.1016/j.esmoop.2022.100433.
[34]
SUTTON E J, ONISHI N, FEHR D A, et al. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy[J/OL]. Breast Cancer Res, 2020, 22(1): 57 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/32466777/. DOI: 10.1186/s13058-020-01291-w.
[35]
DAMMU H, REN T, DUONG T Q. Deep learning prediction of pathological complete response, residual cancer burden, and progression-free survival in breast cancer patients[J/OL]. PLoS One, 2023, 18(1): e0280148 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/36607982/. DOI: 10.1371/journal.pone.0280148.
[36]
LIN Y Y, WANG J F, LI M Z, et al. Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models[J/OL]. Breast, 2024, 76: 103737 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/38696854/. DOI: 10.1016/j.breast.2024.103737.
[37]
KUMILAU R, HAYATI F, LIEW J E, et al. Short term recurrence and survival rate of breast cancer patients post surgical treatment; north Borneo experience[J/OL]. Ann Med Surg, 2022, 81: 104560 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/36147066/. DOI: 10.1016/j.amsu.2022.104560.
[38]
HA R, CHANG P, MUTASA S, et al. Convolutional neural network using a breast MRI tumor dataset can predict oncotype dx recurrence score[J]. J Magn Reson Imaging, 2019, 49(2): 518-524. DOI: 10.1002/jmri.26244.
[39]
ZHANG M, SADINSKI M, HADDAD D, et al. Background parenchymal enhancement on breast MRI as a prognostic surrogate: correlation with breast cancer oncotype dx score[J/OL]. Front Oncol, 2021, 10: 595820 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/33614481/. DOI: 10.3389/fonc.2020.595820.
[40]
CHITALIA R D, ROWLAND J, MCDONALD E S, et al. Imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) scans predict 10-year recurrence[J]. Clin Cancer Res, 2020, 26(4): 862-869. DOI: 10.1158/1078-0432.CCR-18-4067.
[41]
COMES M C, FORGIA D L, DIDONNA V, et al. Early prediction of breast cancer recurrence for patients treated with neoadjuvant chemotherapy: a transfer learning approach on DCE-MRIs[J/OL]. Cancers, 2021, 13(10): 2298 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/34064923/. DOI: 10.3390/cancers13102298.
[42]
ROMEO V, CUOCOLO R, SANDUZZI L, et al. MRI radiomics and machine learning for the prediction of oncotype dx recurrence score in invasive breast cancer[J/OL]. Cancers, 2023, 15(6): 1840 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/36980724/. DOI: 10.3390/cancers15061840.
[43]
AREFAN D, ZULEY M L, BERG W A, et al. Assessment of background parenchymal enhancement at dynamic contrast-enhanced MRI in predicting breast cancer recurrence risk[J/OL]. Radiology, 2024, 310(1): e230269 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/38259203/. DOI: 10.1148/radiol.230269.
[44]
CARDOSO F, VAN'T VEER L J, BOGAERTS J, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer[J]. N Engl J Med, 2016, 375(8): 717-729. DOI: 10.1056/NEJMoa1602253.
[45]
SPARANO J A, GRAY R J, MAKOWER D F, et al. Prospective validation of a 21-gene expression assay in breast cancer[J]. N Engl J Med, 2015, 373(21): 2005-2014. DOI: 10.1056/NEJMoa1510764.
[46]
GULLO R L, PARTRIDGE S C, SHIN H J, et al. Update on DWI for breast cancer diagnosis and treatment monitoring[J/OL]. AJR Am J Roentgenol, 2024, 222(1): e2329933 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37850579/. DOI: 10.2214/AJR.23.29933.
[47]
WILPERT C, NEUBAUER C, RAU A, et al. Accelerated diffusion-weighted imaging in 3 T breast MRI using a deep learning reconstruction algorithm with superresolution processing: a prospective comparative study[J]. Invest Radiol, 2023, 58(12): 842-852. DOI: 10.1097/RLI.0000000000000997.
[48]
WESSLING D, GASSENMAIER S, OLTHOF S C, et al. Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI[J/OL]. Eur J Radiol, 2023, 166: 110948 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37481831/. DOI: 10.1016/j.ejrad.2023.110948.
[49]
JING X P, WIELEMA M, CORNELISSEN L J, et al. Using deep learning to safely exclude lesions with only ultrafast breast MRI to shorten acquisition and reading time[J]. Eur Radiol, 2022, 32(12): 8706-8715. DOI: 10.1007/s00330-022-08863-8.
[50]
KAPSNER L A, BALBACH E L, FOLLE L, et al. Image quality assessment using deep learning in high b-value diffusion-weighted breast MRI[J/OL]. Sci Rep, 2023, 13(1): 10549 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37386021/. DOI: 10.1038/s41598-023-37342-3.
[51]
LIEBERT A, DAS B K, KAPSNER L A, et al. Smart forecasting of artifacts in contrast-enhanced breast MRI before contrast agent administration[J]. Eur Radiol, 2024, 34(7): 4752-4763. DOI: 10.1007/s00330-023-10469-7.
[52]
BALKENENDE L, TEUWEN J, MANN R M.Application of deep learning in breast cancer imaging[J]. Semin Nucl Med, 2022, 52(5): 584-596. DOI: 10.1053/j.semnuclmed.2022.02.003.
[53]
LOKAJ B, PUGLIESE M T, KINKEL K, et al. Barriers and facilitators of artificial intelligence conception and implementation for breast imaging diagnosis in clinical practice: a scoping review[J]. Eur Radiol, 2024, 34(3): 2096-2109. DOI: 10.1007/s00330-023-10181-6.
[54]
MIOTTO R, WANG F, WANG S, et al. Deep learning for healthcare: review, opportunities and challenges[J]. Brief Bioinform, 2018, 19(6): 1236-1246. DOI: 10.1093/bib/bbx044.

PREV Application and research progress of MRI radiomics in brain metastases from lung cancer
NEXT Advances in radiomics and deep learning in predicting colorectal cancer-related gene mutations
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn