Share:
Share this content in WeChat
X
Review
The research progress of MRI in predicting the efficacy of neoadjuvant chemoradiotherapy for rectal cancer
YANG Airu  CAO Yuntai  HOU Yuyin  ZHOU Boqi 

Cite this article as: YANG A R, CAO Y T, HOU Y Y, et al. The research progress of MRI in predicting the efficacy of neoadjuvant chemoradiotherapy for rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 204-209, 214. DOI:10.12015/issn.1674-8034.2025.02.033.


[Abstract] Neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision (TME) has become a globally recognized treatment strategy for locally advanced rectal cancer (LARC). Postoperative pathological examination is the gold standard for evaluating the efficacy of nCRT, but it is invasive and has a certain lag, and cannot be routinely used for preoperative clinical diagnosis. As a non-invasive method for evaluating the efficacy of nCRT, imaging can achieve early and dynamic assessment of the efficacy of nCRT in LARC patients. Among them, MRI is the preferred imaging examination for evaluating the efficacy of nCRT in LARC patients. Therefore, using MRI-related techniques to non-invasively predict the efficacy of nCRT in LARC patients before surgery has important clinical value and can help provide individualized treatment plans for patients and avoid overtreatment. This article aims to systematically review the research progress of conventional MRI, functional MRI, MRI radiomics, and deep learning and other MRI imaging techniques in evaluating the efficacy of nCRT in LARC patients, and to prospect the future development trends.
[Keywords] rectal cancer;neoadjuvant chemoradiotherapy;tumor regression grade;magnetic resonance imaging;radiomics;deep learning

YANG Airu   CAO Yuntai*   HOU Yuyin   ZHOU Boqi  

Image Center of Affiliated Hospital of Qinghai University, Xining 810001, China

Corresponding author: CAO Y T, E-mail: caoyt18@lzu.edu.cn

Conflicts of interest   None.

Received  2024-11-28
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.033
Cite this article as: YANG A R, CAO Y T, HOU Y Y, et al. The research progress of MRI in predicting the efficacy of neoadjuvant chemoradiotherapy for rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(2): 204-209, 214. DOI:10.12015/issn.1674-8034.2025.02.033.

[1]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[2]
YAO H W, LI X X, CUI L, et al. Annual report of Chinese colorectal cancer surgery database in 2022: a nationwide registry study[J]. Chin J Pract Surg, 2023, 43(1): 93-99. DOI: 10.19538/j.cjps.issn1005-2208.2023.01.13.
[3]
PANG K, YANG Y, ZHAO P F, et al. Adding immune checkpoint blockade to neoadjuvant chemoradiation in locally advanced rectal cancer[J]. Br J Surg, 2022, 109(11): 1178-1179. DOI: 10.1093/bjs/znac298.
[4]
PENG J J, ZHU J, LIU F Q, et al. Expert consensus on diagnosis and treatment of locally advanced rectal cancer in China[J]. China Oncol, 2017, 27(1): 41-80. DOI: 10.19401/j.cnki.1007-3639.2017.01.008.
[5]
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(10): 1139-1167. DOI: 10.6004/jnccn.2022.0051.
[6]
ZHU W L, XU Y S, ZHU H L, et al. Multi-parametric MRI radiomics for predicting response to neoadjuvant therapy in patients with locally advanced rectal cancer[J]. Jpn J Radiol, 2024, 42(12): 1448-1457. DOI: 10.1007/s11604-024-01630-3.
[7]
CUSTERS P A, VAN DER SANDE M E, GROTENHUIS B A, et al. Long-term quality of life and functional outcome of patients with rectal cancer following a watch-and-wait approach[J/OL]. JAMA Surg, 2023, 158(5): e230146 [2025-02-10]. https://pubmed.ncbi.nlm.nih.gov/36988922/. DOI: 10.1001/jamasurg.2023.0146.
[8]
HORVAT N, ROCHA C C T, OLIVEIRA B C, et al. MRI of rectal cancer: tumor staging, imaging techniques, and management[J]. Radiographics, 2019, 39(2): 367-387. DOI: 10.1148/rg.2019180114.
[9]
PATEL U B, TAYLOR F, BLOMQVIST L, et al. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience[J]. J Clin Oncol, 2011, 29(28): 3753-3760. DOI: 10.1200/JCO.2011.34.9068.
[10]
VAN DEN BROEK J J, VAN DER WOLF F S W, LAHAYE M J, et al. Accuracy of MRI in restaging locally advanced rectal cancer after preoperative chemoradiation[J]. Dis Colon Rectum, 2017, 60(3): 274-283. DOI: 10.1097/DCR.0000000000000743.
[11]
SCLAFANI F, BROWN G, CUNNINGHAM D, et al. Comparison between MRI and pathology in the assessment of tumour regression grade in rectal cancer[J]. Br J Cancer, 2017, 117(10): 1478-1485. DOI: 10.1038/bjc.2017.320.
[12]
YOEN H, PARK H E, KIM S H, et al. Prognostic value of tumor regression grade on MR in rectal cancer: a large-scale, single-center experience[J]. Korean J Radiol, 2020, 21(9): 1065-1076. DOI: 10.3348/kjr.2019.0797.
[13]
PANG X L, XIE P Y, YU L, et al. A new magnetic resonance imaging tumour response grading scheme for locally advanced rectal cancer[J]. Br J Cancer, 2022, 127(2): 268-277. DOI: 10.1038/s41416-022-01801-x.
[14]
KIM S, HAN K, SEO N, et al. T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2018, 28(12): 5231-5240. DOI: 10.1007/s00330-018-5520-1.
[15]
LUTSYK M, AWAWDA M, GOUREVICH K, et al. Tumor volume as predictor of pathologic complete response following neoadjuvant chemoradiation in locally advanced rectal cancer[J]. Am J Clin Oncol, 2021, 44(9): 482-486. DOI: 10.1097/COC.0000000000000846.
[16]
NAPOLETANO M, MAZZUCCA D, PROSPERI E, et al. Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted magnetic resonance imaging in restaging after neoadjuvant chemo-radiotherapy[J]. Abdom Radiol, 2019, 44(11): 3664-3673. DOI: 10.1007/s00261-019-02012-4.
[17]
ZHAO M J, ZHAO L H, YANG H, et al. Apparent diffusion coefficient for the prediction of tumor response to neoadjuvant chemo-radiotherapy in locally advanced rectal cancer[J/OL]. Radiat Oncol, 2021, 16(1): 17 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/33472660/. DOI: 10.1186/s13014-020-01738-6.
[18]
BORASCHI P, CERVELLI R, DONATI F, et al. Response assessment of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: Is apparent diffusion coefficient useful on 3 T magnetic resonance imaging?[J]. Colorectal Dis, 2023, 25(5): 905-915. DOI: 10.1111/codi.16483.
[19]
HU H B, JIANG H J, WANG S, et al. 3.0T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol, 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[20]
WEN L, HOU J, ZHOU J M, et al. Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J/OL]. Sci Rep, 2017, 7: 8496 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/28819296/. DOI: 10.1038/s41598-017-09227-9.
[21]
LI H, YUAN Y, CHEN X L, et al. Value of intravoxel incoherent motion for assessment of lymph node status and tumor response after chemoradiation therapy in locally advanced rectal cancer[J/OL]. Eur J Radiol, 2022, 146: 110106 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/34922118/. DOI: 10.1016/j.ejrad.2021.110106.
[22]
YANG L Q, XIA C C, ZHAO J, et al. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J/OL]. Eur J Radiol, 2021, 136: 109504 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/33421885/. DOI: 10.1016/j.ejrad.2020.109504.
[23]
BATES D D B, MAZAHERI Y, LOBAUGH S, et al. Evaluation of diffusion kurtosis and diffusivity from baseline staging MRI as predictive biomarkers for response to neoadjuvant chemoradiation in locally advanced rectal cancer[J]. Abdom Radiol, 2019, 44(11): 3701-3708. DOI: 10.1007/s00261-019-02073-5.
[24]
LI D D, CUI Y F, HOU L N, et al. Diffusion kurtosis imaging-derived histogram metrics for prediction of resistance to neoadjuvant chemoradiotherapy in rectal adenocarcinoma: Preliminary findings[J/OL]. Eur J Radiol, 2021, 144: 109963 [2024-10-27]. https://pubmed.ncbi.nlm.nih.gov/34562744/. DOI: 10.1016/j.ejrad.2021.109963.
[25]
CHEN W C, MAO L T, LI L, et al. Predicting treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer using amide proton transfer MRI combined with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 698427 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/34277445/. DOI: 10.3389/fonc.2021.698427.
[26]
LIAN S S, LIU H M, MENG T B, et al. Quantitative synthetic MRI for predicting locally advanced rectal cancer response to neoadjuvant chemoradiotherapy[J]. Eur Radiol, 2023, 33(3): 1737-1745. DOI: 10.1007/s00330-022-09191-7.
[27]
MA Q, LIU Z L, ZHANG J D, et al. Multi-task reconstruction network for synthetic diffusion kurtosis imaging: Predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer[J/OL]. Eur J Radiol, 2024, 174: 111402 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/38461737/. DOI: 10.1016/j.ejrad.2024.111402.
[28]
YARDIMCI A H, KOCAK B, SEL I, et al. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI[J]. Jpn J Radiol, 2023, 41(1): 71-82. DOI: 10.1007/s11604-022-01325-7.
[29]
ANTUNES J T, OFSHTEYN A, BERA K, et al. Radiomic features of primary rectal cancers on baseline T2-weighted MRI are associated with pathologic complete response to neoadjuvant chemoradiation: A multisite study[J]. J Magn Reson Imaging, 2020, 52(5): 1531-1541. DOI: 10.1002/jmri.27140.
[30]
CUSUMANO D, MEIJER G, LENKOWICZ J, et al. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer[J]. Radiol Med, 2021, 126(3): 421-429. DOI: 10.1007/s11547-020-01266-z.
[31]
WANG J, CHEN J J, ZHOU R Z, et al. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients[J/OL]. BMC Cancer, 2022, 22(1): 420 [2024-10-29]. https://pubmed.ncbi.nlm.nih.gov/35439946/. DOI: 10.1186/s12885-022-09518-z.
[32]
CUI Y F, YANG X T, SHI Z Q, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2019, 29(3): 1211-1220. DOI: 10.1007/s00330-018-5683-9.
[33]
FERRARI R, MANCINI-TERRACCIANO C, VOENA C, et al. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 118: 1-9. DOI: 10.1016/j.ejrad.2019.06.013.
[34]
SHIN J, SEO N, BAEK S E, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy[J]. Radiology, 2022, 303(2): 351-358. DOI: 10.1148/radiol.211986.
[35]
LI Y. Predicting the efficacy of neoadjuvant therapy for locally advanced rectal cancer based on multi-parameter MRI[D]. Changchun: Jilin University, 2024. DOI: 10.27162/d.cnki.gjlin.2024.006759.
[36]
SHAYESTEH S, NAZARI M, SALAHSHOUR A, et al. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer[J]. Med Phys, 2021, 48(7): 3691-3701. DOI: 10.1002/mp.14896.
[37]
GU Y H, GUO Y Y, GAO N, et al. The proteomic characterization of the peritumor microenvironment in human hepatocellular carcinoma[J]. Oncogene, 2022, 41(17): 2480-2491. DOI: 10.1038/s41388-022-02264-3.
[38]
SILVA M, VIVANCOS C, DUFFAU H. The concept of《Peritumoral zone》in diffuse low-grade gliomas: oncological and functional implications for a connectome-guided therapeutic attitude[J/OL]. Brain Sci, 2022, 12(4): 504 [2024-10-29]. https://pubmed.ncbi.nlm.nih.gov/35448035/. DOI: 10.3390/brainsci12040504.
[39]
QIN S Y, LU S Y, LIU K, et al. Radiomics from mesorectal blood vessels and lymph nodes: a novel prognostic predictor for rectal cancer with neoadjuvant therapy[J/OL]. Diagnostics, 2023, 13(12): 1987 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/37370882/. DOI: 10.3390/diagnostics13121987.
[40]
QIN S Y, LIU K, CHEN Y Y, et al. Prediction of pathological response and lymph node metastasis after neoadjuvant therapy in rectal cancer through tumor and mesorectal MRI radiomic features[J/OL]. Sci Rep, 2024, 14(1): 21927 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/39304726/. DOI: 10.1038/s41598-024-72916-9.
[41]
GUO X, HE Y, YUAN Z, et al. Association analysis between intratumoral and peritumoral MRI radiomics features and overall survival of neoadjuvant therapy in rectal cancer[J]. J Magn Reson Imag, 2025, 61(1): 452-465. DOI: 10.1002/jmri.29396.
[42]
WANG Y Q, ZHANG L Y, JIANG Y T, et al. Multiparametric magnetic resonance imaging (MRI)-based radiomics model explained by the Shapley Additive exPlanations (SHAP) method for predicting complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicenter retrospective study[J]. Quant Imaging Med Surg, 2024, 14(7): 4617-4634. DOI: 10.21037/qims-24-7.
[43]
HU T D, GONG J, SUN Y Q, et al. Magnetic resonance imaging-based radiomics analysis for prediction of treatment response to neoadjuvant chemoradiotherapy and clinical outcome in patients with locally advanced rectal cancer: a large multicentric and validated study[J/OL]. MedComm, 2024, 5(7): e609 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/38911065/. DOI: 10.1002/mco2.609.
[44]
MARINKOVIC M, STOJANOVIC-RUNDIC S, STANOJEVIC A, et al. Performance and dimensionality of pretreatment MRI radiomics in rectal carcinoma chemoradiotherapy prediction[J/OL]. J Clin Med, 2024, 13(2): 421 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/38256556/. DOI: 10.3390/jcm13020421.
[45]
LOSURDO P, GANDIN I, BELGRANO M, et al. microRNAs combined to radiomic features as a predictor of complete clinical response after neoadjuvant radio-chemotherapy for locally advanced rectal cancer: a preliminary study[J]. Surg Endosc, 2023, 37(5): 3676-3683. DOI: 10.1007/s00464-022-09851-1.
[46]
DEFEUDIS A, MAZZETTI S, PANIC J, et al. MRI-based radiomics to predict response in locally advanced rectal cancer: comparison of manual and automatic segmentation on external validation in a multicentre study[J/OL]. Eur Radiol Exp, 2022, 6(1): 19 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/35501512/. DOI: 10.1186/s41747-022-00272-2.
[47]
FILITTO G, COPPOLA F, CURTI N, et al. Automated prediction of the response to neoadjuvant chemoradiotherapy in patients affected by rectal cancer[J/OL]. Cancers, 2022, 14(9): 2231 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/35565360/. DOI: 10.3390/cancers14092231.
[48]
LI Z Y, WANG X D, LI M, et al. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer[J]. World J Gastroenterol, 2020, 26(19): 2388-2402. DOI: 10.3748/wjg.v26.i19.2388.
[49]
BORDRON A, RIO E, BADIC B, et al. External validation of a radiomics model for the prediction of complete response to neoadjuvant chemoradiotherapy in rectal cancer[J/OL]. Cancers, 2022, 14(4): 1079 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/35205826/. DOI: 10.3390/cancers14041079.
[50]
FENG L L, LIU Z Y, LI C F, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study[J/OL]. Lancet Digit Health, 2022, 4(1): e8-e17 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/34952679/. DOI: 10.1016/S2589-7500(21)00215-6.
[51]
WAN L J, SUN Z, PENG W J, et al. Selecting candidates for organ-preserving strategies after neoadjuvant chemoradiotherapy for rectal cancer: development and validation of a model integrating MRI radiomics and pathomics[J]. J Magn Reson Imaging, 2022, 56(4): 1130-1142. DOI: 10.1002/jmri.28108.
[52]
CHEN H, LI X, PAN X Y, et al. Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer[J/OL]. Phys Med Biol, 2023, 68(23) [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/37972413/. DOI: 10.1088/1361-6560/ad0d46.
[53]
LI L L, XU B, ZHUANG Z K, et al. Accurate tumor segmentation and treatment outcome prediction with DeepTOP[J/OL]. Radiother Oncol, 2023, 183: 109550 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/36813177/. DOI: 10.1016/j.radonc.2023.109550.
[54]
HU Y H, LI J, ZHUANG Z K, et al. Automatic treatment outcome prediction with DeepInteg based on multimodal radiological images in rectal cancer[J/OL]. Heliyon, 2023, 9(2): e13094 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/36785834/. DOI: 10.1016/j.heliyon.2023.e13094.
[55]
ZHOU X Z, YU Y, FENG Y R, et al. Attention mechanism based multi-sequence MRI fusion improves prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J/OL]. Radiat Oncol, 2023, 18(1): 175 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/37891611/. DOI: 10.1186/s13014-023-02352-y.
[56]
ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI: 10.1148/radiol.2020190936.

PREV Advances in radiomics and deep learning in predicting colorectal cancer-related gene mutations
NEXT Research progress of synthetic magnetic resonance imaging in prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn