Share:
Share this content in WeChat
X
Review
Application of metal-based theranostic magnetic resonance imaging contrast agents in tumor imaging and therapy
SHI Weijun  SUN Hongzan 

Cite this article as: SHI W J, SUN H Z. Application of metal-based theranostic magnetic resonance imaging contrast agents in tumor imaging and therapy[J]. Chin J Magn Reson Imaging, 2025, 16(2): 215-221. DOI:10.12015/issn.1674-8034.2025.02.035.


[Abstract] Magnetic resonance imaging (MRI), with its excellent spatial resolution and soft tissue contrast, plays a key role in the diagnosis, treatment, and prognosis evaluation of tumors. MR contrast agents enhance the sensitivity of lesion detection by shortening relaxation times, thereby improving the contrast between lesions and surrounding normal tissues. In recent years, the development of novel theranostic MRI contrast agents has become a research hotspot. Among them, metal-based MRI contrast agents have attracted particular attention due to their unique physicochemical properties, which not only significantly enhance the efficacy of tumor therapy but also provide diverse surface modification strategies. In this review, we systematically summarize the recent advances in metal-based MRI contrast agents in the fields of tumor imaging and therapy. We elaborate on their imaging and therapeutic mechanisms, as well as their applications in the emerging field of "theranostics." Finally, we briefly discuss the major technical bottlenecks and key challenges that need to be addressed in the integration of tumor diagnosis and therapy using metal-based MRI contrast agents. Through a comprehensive review of the application of metal-based MRI contrast agents in integrated diagnosis and therapy for tumors, this review provides theoretical support for the further development of this field and offers valuable insights for future research exploration. With the continuous advancement of nanotechnology, materials science, and biomedicine, metal-based MRI contrast agents are expected to play an even greater role in enhancing tumor diagnostic capabilities and achieving more precise therapeutic effects in the future.
[Keywords] theranostics;magnetic resonance imaging contrast agents;iron oxide;gadolinium;manganese;magnetic resonance imaging

SHI Weijun1   SUN Hongzan2*  

1 The Second Clinical College of China Medical University, Shenyang 110004, China

2 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

Corresponding author: SUN H Z, E-mail: sunhongzan@126.com

Conflicts of interest   None.

Received  2024-12-30
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.035
Cite this article as: SHI W J, SUN H Z. Application of metal-based theranostic magnetic resonance imaging contrast agents in tumor imaging and therapy[J]. Chin J Magn Reson Imaging, 2025, 16(2): 215-221. DOI:10.12015/issn.1674-8034.2025.02.035.

[1]
HOFFMANN E, MASTHOFF M, KUNZ W G, et al. Multiparametric MRI for characterization of the tumour microenvironment[J]. Nat Rev Clin Oncol, 2024, 21(6): 428-448. DOI: 10.1038/s41571-024-00891-1.
[2]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[3]
PETRALIA G, SUMMERS P E, AGOSTINI A, et al. Dynamic contrast-enhanced MRI in oncology: how we do it[J]. Radiol Med, 2020, 125(12): 1288-1300. DOI: 10.1007/s11547-020-01220-z.
[4]
HUANG R J, ZHOU X Y, CHEN G Y, et al. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications[J/OL]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022, 14(4): e1800 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/35445588/. DOI: 10.1002/wnan.1800.
[5]
JEON M, HALBERT M V, STEPHEN Z R, et al. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives[J/OL]. Adv Mater, 2021, 33(23): e1906539 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/32495404/. DOI: 10.1002/adma.201906539.
[6]
ROY S, GU J S, XIA W J, et al. Advancements in manganese complex-based MRI agents: Innovations, design strategies, and future directions[J/OL]. Drug Discov Today, 2024, 29(9): 104101 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/39019428/. DOI: 10.1016/j.drudis.2024.104101.
[7]
ZHANG K, QI C, CAI K Y. Manganese-based tumor immunotherapy[J/OL]. Adv Mater, 2023, 35(19): e2205409 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/36121368/. DOI: 10.1002/adma.202205409.
[8]
ZHANG C, LIU X Y, JIN S D, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance[J/OL]. Mol Cancer, 2022, 21(1): 47 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/35151318/. DOI: 10.1186/s12943-022-01530-y.
[9]
ROBERTSON A G, RENDINA L M. Gadolinium theranostics for the diagnosis and treatment of cancer[J]. Chem Soc Rev, 2021, 50(7): 4231-4244. DOI: 10.1039/d0cs01075h.
[10]
YANG J, FENG J, YANG S, et al. Exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and imaging-guided therapy of tumors[J/OL]. Small, 2023, 19(49): e2302856 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/37596716/. DOI: 10.1002/smll.202302856.
[11]
SHEN Z Y, WU A G, CHEN X Y. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging[J]. Mol Pharm, 2017, 14(5): 1352-1364. DOI: 10.1021/acs.molpharmaceut.6b00839.
[12]
BAABU P R S, KUMAR H K, GUMPU M B, et al. Iron oxide nanoparticles: a review on the province of its compounds, properties and biological applications[J/OL]. Materials, 2022, 16(1): 59 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/36614400/. DOI: 10.3390/ma16010059.
[13]
TRAN H V, NGO N M, MEDHI R, et al. Multifunctional iron oxide magnetic nanoparticles for biomedical applications: a review[J/OL]. Materials, 2022, 15(2): 503 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/35057223/. DOI: 10.3390/ma15020503.
[14]
KARA G, OZPOLAT B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer[J/OL]. Biomed Microdevices, 2024, 26(1): 16 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/38324228/. DOI: 10.1007/s10544-024-00698-y.
[15]
ANANI T, RAHMATI S, SULTANA N, et al. MRI-traceable theranostic nanoparticles for targeted cancer treatment[J]. Theranostics, 2021, 11(2): 579-601. DOI: 10.7150/thno.48811.
[16]
HUANG Y, HSU J C, KOO H, et al. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle[J]. Theranostics, 2022, 12(2): 796-816. DOI: 10.7150/thno.67375.
[17]
PENG Q K, ZHANG S P, YANG H, et al. Boosting potassium storage performance of the Cu2S anode via morphology engineering and electrolyte chemistry[J]. ACS Nano, 2020, 14(5): 6024-6033. DOI: 10.1021/acsnano.0c01681.
[18]
CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. DOI: 10.1038/s41571-020-00462-0.
[19]
LI Z W, RONG L. Cascade reaction-mediated efficient ferroptosis synergizes with immunomodulation for high-performance cancer therapy[J]. Biomater Sci, 2020, 8(22): 6272-6285. DOI: 10.1039/D0BM01168A.
[20]
ZHANG F, LI F, LU G H, et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer[J]. ACS Nano, 2019, 13(5): 5662-5673. DOI: 10.1021/acsnano.9b00892.
[21]
XUE F F, ZHU S T, TIAN Q W, et al. Macrophage-mediated delivery of magnetic nanoparticles for enhanced magnetic resonance imaging and magnetothermal therapy of solid tumors[J]. J Colloid Interface Sci, 2023, 629(Pt A): 554-562. DOI: 10.1016/j.jcis.2022.08.186.
[22]
GAVILÁN H, AVUGADDA S K, FERNÁNDEZ-CABADA T, et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer[J]. Chem Soc Rev, 2021, 50(20): 11614-11667. DOI: 10.1039/d1cs00427a.
[23]
QIAO H S, CHEN X M, WANG Q M, et al. Tumor localization of oncolytic adenovirus assisted by pH-degradable microgels with JQ1-mediated boosting replication and PD-L1 suppression for enhanced cancer therapy[J]. Biomater Sci, 2020, 8(9): 2472-2480. DOI: 10.1039/d0bm00172d.
[24]
MA X T, LIANG X L, LI Y, et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field[J/OL]. Nat Commun, 2023, 14(1): 1606 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/36959204/. DOI: 10.1038/s41467-023-37225-1.
[25]
DIAS A M M, COURTEAU A, BELLAYE P S, et al. Superparamagnetic iron oxide nanoparticles for immunotherapy of cancers through macrophages and magnetic hyperthermia[J/OL]. Pharmaceutics, 2022, 14(11): 2388 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/36365207/. DOI: 10.3390/pharmaceutics14112388.
[26]
GONG T, DONG Z L, FU Y, et al. Hyaluronic acid modified doxorubicin loaded Fe3O4 nanoparticles effectively inhibit breast cancer metastasis[J]. J Mater Chem B, 2019, 7(38): 5861-5872. DOI: 10.1039/c9tb01250h.
[27]
CHUANG Y C, WU P H, SHEN Y A, et al. Recent advances in metal-based NanoEnhancers for particle therapy[J/OL]. Nanomaterials, 2023, 13(6): 1011 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/36985905/. DOI: 10.3390/nano13061011.
[28]
DING Y X, ZENG L L, XIAO X H, et al. Multifunctional magnetic nanoagents for bioimaging and therapy[J]. ACS Appl Bio Mater, 2021, 4(2): 1066-1076. DOI: 10.1021/acsabm.0c01099.
[29]
MEIDANCHI A, AKHAVAN O, KHOEI S, et al. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells[J/OL]. Mater Sci Eng C Mater Biol Appl, 2015, 46: 394-399 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/25492003/. DOI: 10.1016/j.msec.2014.10.062.
[30]
SALUNKHE A, KHOT V, PATIL S I, et al. MRI guided magneto-chemotherapy with high-magnetic-moment iron oxide nanoparticles for cancer theranostics[J]. ACS Appl Bio Mater, 2020, 3(4): 2305-2313. DOI: 10.1021/acsabm.0c00077.
[31]
HENOUMONT C, DEVREUX M, LAURENT S. Mn-based MRI contrast agents: an overview[J/OL]. Molecules, 2023, 28(21): 7275 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/37959694/. DOI: 10.3390/molecules28217275.
[32]
DU R C, ZHAO Z W, CUI J, et al. Manganese-based nanotheranostics for magnetic resonance imaging-mediated precise cancer management[J/OL]. Int J Nanomedicine, 2023, 18: 6077-6099 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/37908669/. DOI: 10.2147/IJN.S426311.
[33]
HUANG P Y, TANG Q L, LI M M, et al. Manganese-derived biomaterials for tumor diagnosis and therapy[J/OL]. J Nanobiotechnology, 2024, 22(1): 335 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/38879519/. DOI: 10.1186/s12951-024-02629-8.
[34]
KARLSSON J O G, JYNGE P. Manganese- and platinum-driven oxidative and nitrosative stress in oxaliplatin-associated CIPN with special reference to Ca4Mn(DPDP)5, MnDPDP and DPDP[J/OL]. Int J Mol Sci, 2024, 25(8): 4347 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/38673932/. DOI: 10.3390/ijms25084347.
[35]
GALE E M, ATANASOVA I P, BLASI F, et al. A manganese alternative to gadolinium for MRI contrast[J]. J Am Chem Soc, 2015, 137(49): 15548-15557. DOI: 10.1021/jacs.5b10748.
[36]
JIAN H, WANG X B, SONG P P, et al. Tumor microcalcification-mediated relay drug delivery for photodynamic immunotherapy of breast cancer[J/OL]. Acta Biomater, 2022, 140: 518-529 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/34923096/. DOI: 10.1016/j.actbio.2021.12.014.
[37]
ZHU P, CHEN Y, SHI J L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation[J]. ACS Nano, 2018, 12(4): 3780-3795. DOI: 10.1021/acsnano.8b00999.
[38]
YANG G B, XU L G, CHAO Y, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses[J/OL]. Nat Commun, 2017, 8(1): 902 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/29026068/. DOI: 10.1038/s41467-017-01050-0.
[39]
WEN Y Y, LIU Y X, CHEN C W, et al. Metformin loaded porous particles with bio-microenvironment responsiveness for promoting tumor immunotherapy[J/OL]. Biomater Sci, 2021, 9(6): 2082-2089 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/33475656/. DOI: 10.1039/d0bm01931c.
[40]
COIMBRA S, ROCHA S, SOUSA N R, et al. Toxicity mechanisms of gadolinium and gadolinium-based contrast agents-a review[J/OL]. Int J Mol Sci, 2024, 25(7): 4071 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/38612881/. DOI: 10.3390/ijms25074071.
[41]
FATIMA A, AHMAD M W, SAIDI A K A AL, et al. Recent advances in gadolinium based contrast agents for bioimaging applications[J/OL]. Nanomaterials, 2021, 11(9): 2449 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/34578765/. DOI: 10.3390/nano11092449.
[42]
DUFORT S, LE DUC G, SALOMÉ M, et al. The high radiosensitizing efficiency of a trace of gadolinium-based nanoparticles in tumors[J/OL]. Sci Rep, 2016, 6: 29678 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/27411781/. DOI: 10.1038/srep29678.
[43]
ZHOU Y T, CHENG K, LIU B, et al. Recent progress of nano-drugs in neutron capture therapy[J]. Theranostics, 2024, 14(8): 3193-3212. DOI: 10.7150/thno.95034.
[44]
KHORASANI A, SHAHBAZI-GAHROUEI D, SAFARI A. Recent metal nanotheranostics for cancer diagnosis and therapy: a review[J/OL]. Diagnostics, 2023, 13(5): 833 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/36899980/. DOI: 10.3390/diagnostics13050833.
[45]
LI F F, LI Z H, JIN X D, et al. Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy[J/OL]. Int J Nanomedicine, 2019, 14: 2415-2431 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/31040665/. DOI: 10.2147/IJN.S193676.
[46]
COULTER J A, HYLAND W B, NICOL J, et al. Radiosensitising nanoparticles as novel cancer therapeutics: pipe dream or realistic prospect?[J]. Clin Oncol, 2013, 25(10): 593-603. DOI: 10.1016/j.clon.2013.06.011.
[47]
BRACHMAN D G, PUGH S L, ASHBY L S, et al. Phase 1/2 trials of Temozolomide, Motexafin Gadolinium, and 60-Gy fractionated radiation for newly diagnosed supratentorial glioblastoma multiforme: final results of RTOG 0513[J]. Int J Radiat Oncol Biol Phys, 2015, 91(5): 961-967. DOI: 10.1016/j.ijrobp.2014.12.050.
[48]
SCHICK U, BOURBONNE V, LUCIA F, et al. Use of nanoparticles in radiation oncology[J]. Cancer Radiother, 2024, 28(6/7): 618-622. DOI: 10.1016/j.canrad.2024.08.006.
[49]
HU P C, FU Z Q, LIU G B, et al. Gadolinium-based nanoparticles for theranostic MRI-guided radiosensitization in hepatocellular carcinoma[J/OL]. Front Bioeng Biotechnol, 2019, 7: 368 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/31828068/. DOI: 10.3389/fbioe.2019.00368.
[50]
WU C Y, CAI R, ZHAO T, et al. Hyaluronic acid-functionalized gadolinium oxide nanoparticles for magnetic resonance imaging-guided radiotherapy of tumors[J/OL]. Nanoscale Res Lett, 2020, 15(1): 94 [2024-12-29]. https://pubmed.ncbi.nlm.nih.gov/32335719/. DOI: 10.1186/s11671-020-03318-9.

PREV Research progress of synthetic magnetic resonance imaging in prostate cancer
NEXT Research progress of magnetic resonance habitat imaging in the prognosis of malignant tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn