Share:
Share this content in WeChat
X
Review
Research progress of quantitative vessel wall imaging with magnetic resonance parameters in carotid atherosclerosis
LI Tingting  WANG Zhenjia  LI Lu  SUN Yumeng  YU Wei 

Cite this article as: LI T T, WANG Z J, LI L, et al. Research progress of quantitative vessel wall imaging with magnetic resonance parameters in carotid atherosclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(2): 229-234. DOI:10.12015/issn.1674-8034.2025.02.037.


[Abstract] Carotid atherosclerosis is a key pathogenic factor for ischemic stroke, and accurate identification of vulnerable plaques is essential for optimizing diagnosis and treatment strategies. Quantitative vessel wall imaging with magnetic resonance parameters can noninvasively assess plaque composition and microstructure, quantify plaque vulnerability, and provide objective evidence for stroke risk prediction and individualized treatment, which has become a research hotspot in precision medicine. This article reviews the technical progress and clinical application of quantitative vessel wall imaging with magnetic resonance parameters in carotid atherosclerosis, analyzes the limitations of existing research and future development directions, and is expected to provide reliable quantitative imaging markers for clinical use in vulnerable plaque identification, risk stratification and efficacy monitoring.
[Keywords] magnetic resonance imaging;parametric quantitative vessel wall imaging;high-resolution magnetic resonance wall imaging;carotid atherosclerosis;vulnerable plaque

LI Tingting   WANG Zhenjia   LI Lu   SUN Yumeng   YU Wei*  

Department of Medical Imaging, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China

Corresponding author: YU W, E-mail: nxyw1969@163.com

Conflicts of interest   None.

Received  2024-11-01
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.02.037
Cite this article as: LI T T, WANG Z J, LI L, et al. Research progress of quantitative vessel wall imaging with magnetic resonance parameters in carotid atherosclerosis[J]. Chin J Magn Reson Imaging, 2025, 16(2): 229-234. DOI:10.12015/issn.1674-8034.2025.02.037.

[1]
TU W J, WANG L D, YAN F, et al. China stroke surveillance report 2021[J/OL]. Mil Med Res, 2023, 10(1): 33 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/37468952/. DOI: 10.1186/s40779-023-00463-x.
[2]
VAN DAM-NOLEN D H K, TRUIJMAN M T B, VAN DER KOLK A G, et al. Carotid plaque characteristics predict recurrent ischemic stroke and TIA: the PARISK (plaque At RISK) study[J]. JACC Cardiovasc Imaging, 2022, 15(10): 1715-1726. DOI: 10.1016/j.jcmg.2022.04.003.
[3]
SABA L, CAU R, MURGIA A, et al. Carotid plaque-RADS[J]. JACC Cardiovasc Imag, 2024, 17(2): 62-75. DOI: 10.1016/j.jcmg.2023.09.005.
[4]
KOPCZAK A, SCHINDLER A, SEPP D, et al. Complicated carotid artery plaques and risk of recurrent ischemic stroke or TIA[J]. J Am Coll Cardiol, 2022, 79(22): 2189-2199. DOI: 10.1016/j.jacc.2022.03.376.
[5]
YANG L, WANG X C. Application progress of high-resolution magnetic resonance imaging vascular wall imaging in ischemic stroke[J]. Chin J Magn Reson Imag, 2022, 13(5): 136-139. DOI: 10.12015/issn.1674-8034.2022.05.028.
[6]
VAN DAM-NOLEN D H K, VAN EGMOND N C M, DILBA K, et al. Sex differences in plaque composition and morphology among symptomatic patients with mild-to-moderate carotid artery stenosis[J]. Stroke, 2022, 53(2): 370-378. DOI: 10.1161/STROKEAHA.121.036564.
[7]
LUO T, GAO Y, WU Q, et al. Meta analysis of the diagnostic value of carotid artery high-resolution magnetic resonance vessel wall imaging in the occurrence and recurrence of ischemic stroke[J]. Chin J Magn Reson Imag, 2024, 15(7): 70-75. DOI: 10.12015/issn.1674-8034.2024.07.012.
[8]
SABA L C, LOEWE C, WEIKERT T, et al. State-of-the-art CT and MR imaging and assessment of atherosclerotic carotid artery disease: standardization of scanning protocols and measurements-a consensus document by the European Society of Cardiovascular Radiology (ESCR)[J]. Eur Radiol, 2023, 33(2): 1063-1087. DOI: 10.1007/s00330-022-09024-7.
[9]
FERNÁNDEZ-ALVAREZ V, LINARES-SÁNCHEZ M, SUÁREZ C, et al. Novel imaging-based biomarkers for identifying carotid plaque vulnerability[J/OL]. Biomolecules, 2023, 13(8): 1236 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/37627301/. DOI: 10.3390/biom13081236.
[10]
JIANG H Y, REN K X, LI T T, et al. Correlation of the characteristics of symptomatic intracranial atherosclerotic plaques with stroke types and risk of stroke recurrence: a cohort study[J/OL]. Ann Transl Med, 2022, 10(12): 658 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/35845483/. DOI: 10.21037/atm-22-2586.
[11]
HOU C, XUAN J Q, ZHAO L, et al. Comparison of the diagnostic performance of contrast-enhanced ultrasound and high-resolution magnetic resonance imaging in the evaluation of histologically defined vulnerable carotid plaque: a systematic review and meta-analysis[J]. Quant Imaging Med Surg, 2024, 14(8): 5814-5830. DOI: 10.21037/qims-24-540.
[12]
SABA L C, CAU R, SPINATO G, et al. Carotid stenosis and cryptogenic stroke[J]. J Vasc Surg, 2024, 79(5): 1119-1131. DOI: 10.1016/j.jvs.2024.01.004.
[13]
WANG Y L, WANG T, LUO Y M, et al. Identification markers of carotid vulnerable plaques: an update[J/OL]. Biomolecules, 2022, 12(9): 1192 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/36139031/. DOI: 10.3390/biom12091192.
[14]
WEI H Y, ZHANG M Q, LI Y D, et al. Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study[J]. Quant Imaging Med Surg, 2020, 10(1): 269-282. DOI: 10.21037/qims.2019.09.11.
[15]
KASSEM M, NIES K P H, BOSWIJK E, et al. Quantification of carotid plaque composition with a multi-contrast atherosclerosis characterization (MATCH) MRI sequence[J/OL]. Front Cardiovasc Med, 2023, 10: 1227495 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/37680565/. DOI: 10.3389/fcvm.2023.1227495.
[16]
LEE U Y, KWAK H S. Evaluation of plaque vulnerability via combination of hemodynamic analysis and simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) sequence for carotid intraplaque hemorrhage[J/OL]. J Pers Med, 2021, 11(9): 856 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/34575633/. DOI: 10.3390/jpm11090856.
[17]
LARSON A S, BRINJIKJI W, KROLL N J, et al. Normalized intraplaque hemorrhage signal on MP-RAGE as a marker for acute ischemic neurological events[J]. Neuroradiol J, 2022, 35(1): 112-118. DOI: 10.1177/19714009211029263.
[18]
JIA Y X, LIU X M, ZHANG L, et al. Integrated head and neck imaging of symptomatic patients with stroke using simultaneous non-contrast cardiovascular magnetic resonance angiography and intraplaque hemorrhage imaging as compared with digital subtraction angiography[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 19 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/35307027/. DOI: 10.1186/s12968-022-00849-1.
[19]
HUANG L X, WU X B, LIU Y A, et al. High-resolution magnetic resonance vessel wall imaging in ischemic stroke and carotid artery atherosclerotic stenosis: a review[J/OL]. Heliyon, 2024, 10(7): e27948 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/38571643/. DOI: 10.1016/j.heliyon.2024.e27948.
[20]
LI C, HANJIAERBIEKE K K, MA W H, et al. Research progress of magnetic resonance quantitative assessment of carotid atherosclerotic plaque components[J]. Chin J Pract Nerv Dis, 2023, 26(4):519-523. DOI: 10.12083/SYSJ.221356.
[21]
DIMOV A V, LI J, NGUYEN T D, et al. QSM throughout the body[J]. J Magn Reson Imaging, 2023, 57(6): 1621-1640. DOI: 10.1002/jmri.28624.
[22]
NAKOU E, PATEL R K, FONTANA M, et al. Cardiovascular magnetic resonance parametric mapping techniques: clinical applications and limitations[J/OL]. Curr Cardiol Rep, 2021, 23(12): 185 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/34762189/. DOI: 10.1007/s11886-021-01607-y.
[23]
QI H K, SUN J, QIAO H Y, et al. Carotid intraplaque hemorrhage imaging with quantitative vessel wall T1 mapping: technical development and initial experience[J]. Radiology, 2018, 287(1): 276-284. DOI: 10.1148/radiol.2017170526.
[24]
BIASIOLLI L, LINDSAY A C, CHAI J T, et al. In-vivo quantitative T2 mapping of carotid arteries in atherosclerotic patients: segmentation and T2 measurement of plaque components[J/OL]. J Cardiovasc Magn Reson, 2013, 15(1): 69 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/23953780/. DOI: 10.1186/1532-429X-15-69.
[25]
CHAI J T, BIASIOLLI L, LI L Q, et al. Quantification of lipid-rich core in carotid atherosclerosis using magnetic resonance T2 mapping: relation to clinical presentation[J]. JACC Cardiovasc Imaging, 2017, 10(7): 747-756. DOI: 10.1016/j.jcmg.2016.06.013.
[26]
ALKHALIL M, BIASIOLLI L, CHAI J T, et al. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy[J/OL]. PLoS One, 2017, 12(7): e0181668 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/28746385/. DOI: 10.1371/journal.pone.0181668.
[27]
ALKHALIL M, BIASIOLLI L, AKBAR N, et al. T2 mapping MRI technique quantifies carotid plaque lipid, and its depletion after statin initiation, following acute myocardial infarction[J/OL]. Atherosclerosis, 2018, 279: 100-106 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/30227984/. DOI: 10.1016/j.atherosclerosis.2018.08.033.
[28]
YUAN J M, PATTERSON A J, RUETTEN P P R, et al. A comparison of black-blood T2 mapping sequences for carotid vessel wall imaging at 3T: an assessment of accuracy and repeatability[J]. Magn Reson Med Sci, 2019, 18(1): 29-35. DOI: 10.2463/mrms.mp.2017-0141.
[29]
GUO Q, QIAN C, QIAN Z M. Iron metabolism and atherosclerosis[J]. Trends Endocrinol Metab, 2023, 34(7): 404-413. DOI: 10.1016/j.tem.2023.04.003.
[30]
WINNER M W, SHARKEY-TOPPEN T, ZHANG X L, et al. Iron and noncontrast magnetic resonance T2* as a marker of intraplaque iron in human atherosclerosis[J]. J Vasc Surg, 2015, 61(6): 1556-1564. DOI: 10.1016/j.jvs.2014.02.006.
[31]
RAMAN S V, WINNER M W, TRAN T, et al. In vivo atherosclerotic plaque characterization using magnetic susceptibility distinguishes symptom-producing plaques[J]. JACC Cardiovasc Imaging, 2008, 1(1): 49-57. DOI: 10.1016/j.jcmg.2007.09.002.
[32]
RAMAN S V, SHARKEY-TOPPEN T P, TRAN T, et al. Iron, inflammation and atherosclerosis risk in men vs. perimenopausal women[J]. Atherosclerosis, 2015, 241(1): 249-254. DOI: 10.1016/j.atherosclerosis.2015.03.032.
[33]
PATTERSON A J, TANG T Y, GRAVES M J, et al. In vivo carotid plaque MRI using quantitative T2* measurements with ultrasmall superparamagnetic iron oxide particles: a dose-response study to statin therapy[J]. NMR Biomed, 2011, 24(1): 89-95. DOI: 10.1002/nbm.1560.
[34]
MOONEN R P M, COOLEN B F, SLUIMER J C, et al. Iron oxide nanoparticle uptake in mouse brachiocephalic artery atherosclerotic plaque quantified by T2-mapping MRI[J/OL]. Pharmaceutics, 2021, 13(2): 279 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/33669667/. DOI: 10.3390/pharmaceutics13020279.
[35]
SHARKEY-TOPPEN T P, MIHAI G, MAISEYEU A, et al. Improved in vivo human carotid artery wall T2 estimation[J]. Magn Reson Imaging, 2013, 31(1): 44-52. DOI: 10.1016/j.mri.2012.06.006.
[36]
ISHIMARU H, IKEBE Y, IZUMO T, et al. Assessment for carotid atherosclerotic plaque using vessel wall magnetic resonance imaging: a multireader ROC study to determine optimal sequence for detecting vessel wall calcification[J]. J Vasc Res, 2024, 61(3): 122-128. DOI: 10.1159/000538175.
[37]
WANG C Y, ZHANG Y, DU J W, et al. Quantitative susceptibility mapping for characterization of intraplaque hemorrhage and calcification in carotid atherosclerotic disease[J]. J Magn Reson Imaging, 2020, 52(2): 534-541. DOI: 10.1002/jmri.27064.
[38]
AZUMA M, MAEKAWA K, YAMASHITA A, et al. Characterization of carotid plaque components by quantitative susceptibility mapping[J]. AJNR Am J Neuroradiol, 2020, 41(2): 310-317. DOI: 10.3174/ajnr.A6374.
[39]
NGUYEN T D, WEN Y, DU J W, et al. Quantitative susceptibility mapping of carotid plaques using nonlinear total field inversion: Initial experience in patients with significant carotid stenosis[J]. Magn Reson Med, 2020, 84(3): 1501-1509. DOI: 10.1002/mrm.28227.
[40]
RUETTEN P P R, CLUROE A D, USMAN A, et al. Simultaneous MRI water-fat separation and quantitative susceptibility mapping of carotid artery plaque pre- and post-ultrasmall superparamagnetic iron oxide-uptake[J]. Magn Reson Med, 2020, 84(2): 686-697. DOI: 10.1002/mrm.28151.
[41]
OTA H, TAMURA H, ITABASHI R, et al. Quantitative characterization of carotid plaque components using MR apparent diffusion coefficients and longitudinal relaxation rates at 3T: a comparison with histology[J]. J Magn Reson Imaging, 2018, 48(6): 1657-1667. DOI: 10.1002/jmri.26216.
[42]
KIM S E, PARKER D L, ROBERTS J A, et al. Differentiation of symptomatic and asymptomatic carotid intraplaque hemorrhage using 3D high-resolution diffusion-weighted stack of stars imaging[J/OL]. NMR Biomed, 2021, 34(11): e4582 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/34296793/. DOI: 10.1002/nbm.4582.
[43]
ALEX A, AYYAPPAN A, VALAKADA J, et al. Role of diffusion-weighted imaging in carotid plaque vulnerability assessment[J/OL]. Egypt J Radiol Nucl Med, 2022, 53(1): 124 [2024-10-30]. https://ejrnm.springeropen.com/articles/10.1186/s43055-022-00776-2. DOI: 10.1186/s43055-022-00776-2.
[44]
WANG X Y, LI J, WANG X, et al. Clinical evaluation of high-resolution MRI combined with DWI in identifying vulnerable carotid plaque[J]. Neurologist, 2023, 28(1): 5-10. DOI: 10.1097/NRL.0000000000000432.
[45]
XIE Y B, YU W, FAN Z Y, et al. High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media[J/OL]. J Cardiovasc Magn Reson, 2014, 16(1): 67 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/25238168/. DOI: 10.1186/s12968-014-0067-z.
[46]
TORNIFOGLIO B, STONE A J, JOHNSTON R D, et al. Diffusion tensor imaging and arterial tissue: establishing the influence of arterial tissue microstructure on fractional anisotropy, mean diffusivity and tractography[J/OL]. Sci Rep, 2020, 10(1): 20718 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/33244026/. DOI: 10.1038/s41598-020-77675-x.
[47]
TORNIFOGLIO B, STONE A J, KERSKENS C, et al. Ex vivo study using diffusion tensor imaging to identify biomarkers of atherosclerotic disease in human cadaveric carotid arteries[J]. Arterioscler Thromb Vasc Biol, 2022, 42(11): 1398-1412. DOI: 10.1161/ATVBAHA.122.318112.
[48]
TORNIFOGLIO B, JOHNSTON R D, STONE A J, et al. Microstructural and mechanical insight into atherosclerotic plaques: an ex vivo DTI study to better assess plaque vulnerability[J]. Biomech Model Mechanobiol, 2023, 22(5): 1515-1530. DOI: 10.1007/s10237-022-01671-5.
[49]
COOLEN B F, POOT D H J, LIEM M I, et al. Three-dimensional quantitative T1 and T2 mapping of the carotid artery: Sequence design and in vivo feasibility[J]. Magn Reson Med, 2016, 75(3): 1008-1017. DOI: 10.1002/mrm.25634.
[50]
QI H K, SUN J, QIAO H Y, et al. Simultaneous T1 and T2 mapping of the carotid plaque (SIMPLE) with T2 and inversion recovery prepared 3D radial imaging[J]. Magn Reson Med, 2018, 80(6): 2598-2608. DOI: 10.1002/mrm.27361.
[51]
WANG Y J, LIU X M, WANG J, et al. Simultaneous T1, T2, and T2* mapping of carotid plaque: the SIMPLE* technique[J/OL]. Radiology, 2023, 307(3): e222061 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/36853181/. DOI: 10.1148/radiol.222061.
[52]
QIAO H Y, YANG Q S, HUO R, et al. Reliability and value of 3D sequential QUantitative T1-T2-T2* MAppings (SQUMA) MR multi-parametric imaging in characterizing carotid artery atherosclerosis[J]. J Magn Reson Imaging, 2023, 57(5): 1376-1389. DOI: 10.1002/jmri.28445.
[53]
FUJIWARA Y, MIO M. Improvement in the contrast-to-noise ratio and quantitative measurement of T1 and T2* values for carotid atherosclerotic plaque using multi-echo phase-sensitive inversion recovery[J]. Radiol Phys Technol, 2021, 14(2): 186-192. DOI: 10.1007/s12194-021-00619-1.
[54]
TRUONG M, LENNARTSSON F, BIBIC A, et al. Classifications of atherosclerotic plaque components with T1 and T2* mapping in 11.7 T MRI[J/OL]. Eur J Radiol Open, 2021, 8: 100323 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/33532518/. DOI: 10.1016/j.ejro.2021.100323.

PREV Research progress of magnetic resonance habitat imaging in the prognosis of malignant tumors
NEXT No Records
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn