Share:
Share this content in WeChat
X
Clinical Article
Sex-specific brain morphology and network differences in Parkinson's disease patients with probable rapid eye movement sleep behavior disorder
LIU Yang  ZHANG Pengfei  LI Hao  ZHOU Liang  JIANG Jingqi  JIANG Yanli  YANG Wenxia  ZHANG Jing 

Cite this article as: LIU Y, ZHANG P F, LI H, et al. Sex-specific brain morphology and network differences in Parkinson's disease patients with probable rapid eye movement sleep behavior disorder[J]. Chin J Magn Reson Imaging, 2025, 16(3): 1-9, 17. DOI:10.12015/issn.1674-8034.2025.03.001.


[Abstract] Objective To explore gender differences in morphological change patterns among different subgroups of Parkinson's disease (PD) patients.Materials and Methods High-resolution T1-weighted magnetic resonance imaging and clinical scale data were collected from a total of 278 participants in the Parkinson's disease Progression Marker Initiative database. Using a cutoff score of 5 on the rapid eye movement sleep behavior disorder (RBD) screening questionnaire, patients were classified into PD-pRBD (≥ 5 points) and PD-nonRBD (< 5 points) groups. The final sample included 93 PD-pRBD patients, 114 PDnonRBD patients, and 71 healthy controls (HC). The Computational Anatomy Toolbox 12 (CAT12) tool was utilized to gather data on gray matter volume (GMV) and cortical morphological metrics. Subsequently, individual-level morphological similarity networks were constructed based on these cortical metrics. Finally, the topological properties of the network were analyzed using graph theoretic methods.Results In the PD-pRBD group, GMV in the frontal and temporal lobes of males was lower than that of females, while the gyrification index (GI) in the frontal lobes was lower in females than in males (P = 0.024). However, the GI of the frontal lobe in males was lower than that in females within the PDnonRBD group (P = 0.009). Network analyses based on graph theory revealed that male PD-pRBD patients displayed lower network information integration compared to female patients, particularly in terms of the global properties of fractal dimension (FD) networks. Moreover, in the PD-pRBD group, male patients showed a strong correlation between morphological network metrics and cognitive performance as measured by the delayed memory score of Hopkins Verbal Learning Test-Revised (HVLT-R) memory scores and the Montreal Cognitive Assessment (MoCA) (all P < 0.05).Conclusions PD patients with and without RBD exhibit significant sex-specific patterns at both the morphological and network levels. Moreover, the sex differences between males and females in the PD-RBD group are more extensive than those in the nonRBD group, and these differences are further associated with cognitive function. This finding emphasizes the importance of considering gender differences in the diagnosis and treatment of PD-pRBD patients.
[Keywords] Parkinson's disease;rapid eye movement sleep behavior disorder;magnetic resonance imaging;sex differences;morphological brain network;cortical surface

LIU Yang1, 2, 3   ZHANG Pengfei1, 2, 3   LI Hao1, 2, 3   ZHOU Liang1, 2, 3   JIANG Jingqi1, 2, 3   JIANG Yanli1, 2, 3   YANG Wenxia1, 2, 3   ZHANG Jing1, 2, 3, 4*  

1 Second Clinical School, Lanzhou University, Lanzhou 730030, China

2 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

4 Gansu Medical MRI Equipment Application Industry Technology Center, Lanzhou 730030, China

Corresponding author: ZHANG J, E-mail: ery_zhangjing@lzu.edu.cn

Conflicts of interest   None.

Received  2024-10-21
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.001
Cite this article as: LIU Y, ZHANG P F, LI H, et al. Sex-specific brain morphology and network differences in Parkinson's disease patients with probable rapid eye movement sleep behavior disorder[J]. Chin J Magn Reson Imaging, 2025, 16(3): 1-9, 17. DOI:10.12015/issn.1674-8034.2025.03.001.

[1]
BIANCO A, ANTONACCI Y, LIGUORI M. Sex and Gender Differences in Neurodegenerative Diseases: Challenges for Therapeutic Opportunities[J/OL]. Int J Mol Sci, 2023, 24(7): 6354 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/37047320/. DOI: 10.3390/ijms24076354.
[2]
YOUNG J E, WU M, HUNSBERGER H C. Editorial: Sex and gender differences in neurodegenerative diseases[J/OL]. Front Neurosci, 2023, 17: 1175674 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10061136/. DOI: 10.3389/fnins.2023.1175674.
[3]
OLTRA J, SEGURA B, URIBE C, et al. Sex differences in brain atrophy and cognitive impairment in Parkinson's disease patients with and without probable rapid eye movement sleep behavior disorder[J]. J Neurol, 2022, 269(3): 1591-1599. DOI: 10.1007/s00415-021-10728-x.
[4]
HODGETTS S, HAUSMANN M. Sex/Gender Differences in Brain Lateralisation and Connectivity[J]. Curr Top Behav Neurosci, 2023, 62: 71-99. DOI: 10.1007/7854_2022_303.
[5]
JURADO-CORONEL J C, CABEZAS R, ÁVILA RODRÍGUEZ M F, et al. Sex differences in Parkinson's disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics[J]. Front Neuroendocrinol, 2018, 50: 18-30. DOI: 10.1016/j.yfrne.2017.09.002.
[6]
ZHENG W, PAN Y, LI K, et al. The correlation between rapid eye movement sleep behavior disorder and the progress of Parkinson's disease: a systematic review and meta-analysis[J/OL]. Front Aging Neurosci, 2024, 16: 1418751 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11288858/. DOI: 10.3389/fnagi.2024.1418751.
[7]
LIU Y, LAWTON M A, LO C, et al. Longitudinal Changes in Parkinson's Disease Symptoms with and Without Rapid Eye Movement Sleep Behavior Disorder: The Oxford Discovery Cohort Study[J]. Mov Disord, 2021, 36(12): 2821-2832. DOI: 10.1002/mds.28763.
[8]
BJØRNARÅ K A, DIETRICHS E, TOFT M. REM sleep behavior disorder in Parkinson's disease--is there a gender difference?[J]. Parkinsonism Relat Disord, 2013, 19(1): 120-122. DOI: 10.1016/j.parkreldis.2012.05.027.
[9]
POSTUMA R B, GAGNON J F, VENDETTE M, et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder[J]. Neurology, 2009, 72(15): 1296-300. DOI: 10.1212/01.wnl.0000340980.19702.6e.
[10]
BUGALHO P, SILVA J A DA, NETO B. Clinical features associated with REM sleep behavior disorder symptoms in the early stages of Parkinson's disease[J]. J Neurol, 2011, 258(1): 50-55. DOI: 10.1007/s00415-010-5679-0.
[11]
LIU R, UMBACH D M, PEDDADA S D, et al. Potential sex differences in nonmotor symptoms in early drug-naive Parkinson disease[J]. Neurology, 2015, 84(21): 2107-2115. DOI: 10.1212/wnl.0000000000001609.
[12]
LIN S J, BAUMEISTER T R, GARG S, et al. Cognitive Profiles and Hub Vulnerability in Parkinson's Disease[J/OL]. Front Neurol, 2018, 9: 482 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6019441/. DOI: 10.3389/fneur.2018.00482.
[13]
MITCHELL T, LEHÉRICY S, CHIU S Y, et al. Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease: A Review[J]. JAMA Neurol, 2021, 78(10): 1262-1272. DOI: 10.1001/jamaneurol.2021.1312.
[14]
YA Y, JI L, JIA Y, et al. Machine Learning Models for Diagnosis of Parkinson's Disease Using Multiple Structural Magnetic Resonance Imaging Features[J/OL]. Front Aging Neurosci, 2022, 14: 808520 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9043762/. DOI: 10.3389/fnagi.2022.808520.
[15]
YADAV S K, KATHIRESAN N, MOHAN S, et al. Gender-based analysis of cortical thickness and structural connectivity in Parkinson's disease[J]. J Neurol, 2016, 263(11): 2308-2318. DOI: 10.1007/s00415-016-8265-2.
[16]
LU M, GUO Z, GAO Z, et al. Multiscale brain network models and their applications in neuropsychiatric diseases[J/OL]. Electronics, 2022, 11(21): 3468 [2024-10-21]. https://www.mdpi.com/2079-9292/11/21/3468. DOI: 10.3390/electronics11213468.
[17]
MERRITT H, FASKOWITZ J, GONZALEZ M Z, et al. Stability and variation of brain-behavior correlation patterns across measures of social support[J]. Imaging Neuroscience, 2024, 2: 1-18. DOI: 10.1162/imag_a_00133.
[18]
LEI T, LIAO X, LIANG X, et al. Functional network modules overlap and are linked to interindividual connectome differences during human brain development[J/OL]. PLoS Biol, 2024, 22(9): e3002653 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11441662/. DOI: 10.1371/journal.pbio.3002653.
[19]
The Parkinson Progression Marker Initiative (PPMI)[J]. Prog Neurobiol, 2011, 95(4): 629-635. DOI: 10.1016/j.pneurobio.2011.09.005.
[20]
STIASNY-KOLSTER K, MAYER G, SCHAFER S, et al. The REM sleep behavior disorder screening questionnaire--a new diagnostic instrument[J]. Mov Disord, 2007, 22(16): 2386-2393. DOI: 10.1002/mds.21740.
[21]
WANG L, WU P, BROWN P, et al. Association of Structural Measurements of Brain Reserve With Motor Progression in Patients With Parkinson Disease[J/OL]. Neurology, 2022, 99(10): e977-e988 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7613818/. DOI: 10.1212/WNL.0000000000200814.
[22]
BARRETT M J, WYLIE S A, HARRISON M B, et al. Handedness and motor symptom asymmetry in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2011, 82(10): 1122-1124. DOI: 10.1136/jnnp.2010.209783.
[23]
DESIKAN R S, SÉGONNE F, FISCHL B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J]. Neuroimage, 2006, 31(3): 968-980. DOI: 10.1016/j.neuroimage.2006.01.021.
[24]
WANG J, WANG X, XIA M, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics[J/OL]. Front Hum Neurosci, 2015, 9: 386 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC4485071/. DOI: 10.3389/fnhum.2015.00386.
[25]
MANJON J V, COUPE P, BUADES A, et al. Non-local MRI upsampling[J]. Med Image Anal, 2010, 14(6): 784-792. DOI: 10.1016/j.media.2010.05.010.
[26]
NEVES MDE C, ALBUQUERQUE M R, Malloy-Diniz L, et al. A voxel-based morphometry study of gray matter correlates of facial emotion recognition in bipolar disorder[J]. Psychiatry Res, 2015, 233(2): 158-164. DOI: 10.1016/j.pscychresns.2015.05.009.
[27]
ARRONDO P, ELÍA-ZUDAIRE Ó, MARTÍ-ANDRÉS G, et al. Grey matter changes on brain MRI in subjective cognitive decline: a systematic review[J/OL]. Alzheimers Res Ther, 2022, 14(1): 98 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9306106/. DOI: 10.1186/s13195-022-01031-6.
[28]
VAIDYA B, DHAMIJA K, GURU P, et al. Parkinson's disease in women: Mechanisms underlying sex differences[J/OL]. Eur J Pharmacol, 2021, 895: 173862 [2024-10-21]. https://www.sciencedirect.com/science/article/pii/S0014299921000157?via%3Dihub. DOI: 10.1016/j.ejphar.2021.173862.
[29]
CERRI S, MUS L, BLANDINI F. Parkinson's Disease in Women and Men: What's the Difference?[J]. J Parkinsons Dis, 2019, 9(3): 501-515. DOI: 10.3233/jpd-191683.
[30]
TREMBLAY C, ABBASI N, ZEIGHAMI Y, et al. Sex effects on brain structure in de novo Parkinson's disease: a multimodal neuroimaging study[J]. Brain, 2020, 143(10): 3052-3066. DOI: 10.1093/brain/awaa234.
[31]
LI J, XU Y, LIU X, et al. Cortical morphological alterations in cognitively normal Parkinson's disease with severe hyposmia[J/OL]. Brain Res, 2024, 1844: 149150 [2024-10-21]. https://www.sciencedirect.com/science/article/pii/S0006899324004049?via%3Dihub. DOI: 10.1016/j.brainres.2024.149150.
[32]
LI D, WANG E, JIA Y, et al. Cortical complexity and gyrification patterns in Parkinson's disease[J]. Neuroreport, 2020, 31(7): 565-570. DOI: 10.1097/wnr.0000000000001448.
[33]
HUTTON C, DRAGANSKI B, ASHBURNER J, et al. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging[J]. Neuroimage, 2009, 48(2): 371-380. DOI: 10.1016/j.neuroimage.2009.06.043.
[34]
MARZI C, GIANNELLI M, TESSA C, et al. Toward a more reliable characterization of fractal properties of the cerebral cortex of healthy subjects during the lifespan[J/OL]. Sci Rep, 2020, 10(1): 16957 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7550568/. DOI: 10.1038/s41598-020-73961-w.
[35]
MADAN C R, KENSINGER E A. Cortical complexity as a measure of age-related brain atrophy[J]. Neuroimage, 2016, 134: 617-629. DOI: 10.1016/j.neuroimage.2016.04.029.
[36]
CHEN J H, HUANG N X, ZOU T X, et al. Brain Cortical Complexity Alteration in Amyotrophic Lateral Sclerosis: A Preliminary Fractal Dimensionality Study[J/OL]. Biomed Res Int, 2020, 2020: 1521679 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7115147/. DOI: 10.1155/2020/1521679.
[37]
LI Z, LI J, WANG N, et al. Single-subject cortical morphological brain networks: Phenotypic associations and neurobiological substrates[J/OL]. Neuroimage, 2023, 283: 120434 [2024-10-21]. https://www.sciencedirect.com/science/article/pii/S1053811923005852?via%3Dihub. DOI: 10.1016/j.neuroimage.2023.120434.
[38]
CHEN Y, ZHAO P, PAN C, et al. State- and trait-related dysfunctions in bipolar disorder across different mood states: a graph theory study[J/OL]. J Psychiatry Neurosci, 2024, 49(1): e11-e22 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10803102/. DOI: 10.1503/jpn.230069.
[39]
WU Z, GAO Y, POTTER T, et al. Interactions Between Aging and Alzheimer's Disease on Structural Brain Networks[J/OL]. Front Aging Neurosci, 2021, 13: 639795 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8222527/. DOI: 10.3389/fnagi.2021.639795.
[40]
TANG C, SUN R, XUE K, et al. Distinct serum GDNF coupling with brain structural and functional changes underlies cognitive status in Parkinson's disease[J/OL]. CNS Neurosci Ther, 2024, 30(3): e14461 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10916445/. DOI: 10.1111/cns.14461.
[41]
LIU J, LI M, PAN Y, et al. Complex brain network analysis and its applications to brain disorders: a survey[J]. Complexity, 2017, 2017(1): 8362741.[2024-10-21].https://www.researchgate.net/publication/320572101_Complex_Brain_Network_Analysis_and_Its_Applications_to_Brain_Disorders_A_Survey. DOI: 10.1155/2017/8362741
[42]
Henry T R, Duffy K A, Rudolph M D, et al. Bridging global and local topology in whole-brain networks using the network statistic jackknife[J]. Netw Neurosci, 2020, 4(1): 70-88. [2024-10-21].https://pmc.ncbi.nlm.nih.gov/articles/PMC7006875/. DOI: 10.1162/netn_a_00109.
[43]
LI X, LEI D, NIU R, et al. Disruption of gray matter morphological networks in patients with paroxysmal kinesigenic dyskinesia[J]. Hum Brain Mapp, 2021, 42(2): 398-411.[2024-10-21].https://pmc.ncbi.nlm.nih.gov/articles/PMC7776009/. DOI: 10.1002/hbm.25230.
[44]
AFTHINOS A, THEMISTOCLEOUS C, HERRMANN O, et al. The Contribution of Working Memory Areas to Verbal Learning and Recall in Primary Progressive Aphasia[J]. Front Neurol, 2022, 13: 698200.[2024-10-21].https://pmc.ncbi.nlm.nih.gov/articles/PMC8892377/. DOI: 10.3389/fneur.2022.698200.
[45]
REN Z, ZHANG Y, HE H, et al. The Different Brain Mechanisms of Object and Spatial Working Memory: Voxel-Based Morphometry and Resting-State Functional Connectivity[J]. Front Hum Neurosci, 2019, 13: 248.[2024-10-21].https://pmc.ncbi.nlm.nih.gov/articles/PMC6659551/.
[46]
LI J, CAO D, YU S, et al. Theta-Alpha Connectivity in the Hippocampal-Entorhinal Circuit Predicts Working Memory Load[J]. J Neurosci, 2024, 44(4).[2024-10-21].https://pmc.ncbi.nlm.nih.gov/articles/PMC10860618/. DOI: 10.1523/jneurosci.0398-23.2023.
[47]
BORAN E, HILFIKER P, STIEGLITZ L, et al. Persistent neuronal firing in the medial temporal lobe supports performance and workload of visual working memory in humans[J]. Neuroimage, 2022, 254: 119123.[2024-10-21].https://www.sciencedirect.com/science/article/pii/S1053811922002518?via%3Dihub. DOI: 10.1016/j.neuroimage.2022.119123.
[48]
BASTIN C, DELHAYE E. Targeting the function of the transentorhinal cortex to identify early cognitive markers of Alzheimer's disease[J]. Cogn Affect Behav Neurosci, 2023, 23(4): 986-96.[2024-10-21].https://link.springer.com/article/10.3758/s13415-023-01093-5. DOI: 10.3758/s13415-023-01093-5.
[49]
WANG F, ZHU Z, ZHOU C, et al. MRI brain structural and functional networks changes in Parkinson disease with REM sleep behavior disorders[J]. Frontiers in Aging Neuroscience, 2024, 16.[2024-10-21].https://pmc.ncbi.nlm.nih.gov/articles/PMC10978796/. DOI: 10.3389/fnagi.2024.1364727.
[50]
YE M, KANG X, KARLSSON I K, et al. Associations between Sleep Disorders and Impulsive-Compulsive Behaviors in Parkinson's Disease: A Prospective Cohort Study[J]. Neuroepidemiology, 2024: 1-8.[2024-10-21].https://pmc.ncbi.nlm.nih.gov/articles/PMC11302741/. DOI: 10.1159/000536555.

PREV Research progress of quantitative vessel wall imaging with magnetic resonance parameters in carotid atherosclerosis
NEXT A quantitative magnetization rate imaging-based study of differences in brain iron content and its association with symptoms in younger autistic children
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn