Share:
Share this content in WeChat
X
Clinical Article
Investigation of central cross-scale mechanisms in the chronification of neck pain via imaging transcriptomics
GAO Zhen  CUI Mengjie  WANG Haijun  JI Laixi 

Cite this article as: GAO Z, CUI M J, WANG H J, et al. Investigation of central cross-scale mechanisms in the chronification of neck pain via imaging transcriptomics[J]. Chin J Magn Reson Imaging, 2025, 16(3): 18-23. DOI:10.12015/issn.1674-8034.2025.03.003.


[Abstract] Objective To explore the central pathological mechanisms underlying the transition from acute to chronic neck pain using imaging transcriptomics.Materials and Methods From March 2023 to May 2024, 86 patients with acute neck pain and 89 patients with chronic neck pain were recruited from Shanxi University of Chinese Medicine and Shanxi Provincial Hospital of Acupuncture and Moxibustion. Using a 3.0 T MR scanner to collect resting-state functional magnetic resonance imaging (rs-fMRI) data based on blood oxygen level-dependent signals from the subjects, with the hypothalamus as the seed region for whole-brain functional connectivity (FC) analysis. Imaging transcriptomics analysis was performed using the Allen Human Brain Atlas (AHBA) transcriptomic dataset, and partial least squares (PLS) regression was employed to investigate regional changes in brain functional activity and gene expression between chronic and acute pain patients. Gene enrichment analysis was conducted using Metascape to reveal the central cross-scale mechanisms during the chronicification of neck pain.Results Compared to acute neck pain, patients with chronic neck pain exhibited increased FC values in the left hypothalamus and right orbital superior frontal gyrus, and decreased FC values in the left hypothalamus and right middle frontal gyrus (Voxel-level P < 0.01, Cluster-level P < 0.05). Additionally, this study found that the PLS1 model explained 43.43% of the variance, and the PLS1weighted gene expression profile was positively correlated with the case-control t-map space (Pearson's r = 0.491, P < 0.05). Enrichment analysis revealed that PLS1+ genes were closely associated with cellular components such as "glutamatergic synapse" and biological processes like "synaptic signaling," while PLS1- genes were closely related to cellular components like "intermediate filament cytoskeleton," molecular functions such as "DNA binding transcription activator activity," and biological processes including "regulation of growth hormone secretion".Conclusions A cross-scale analysis based on imaging transcriptomics has uncovered comprehensive changes in brain functional activity, gene expression, and cell composition during the chronicification of neck pain. This indicates that the chronicification of neck pain is a multi-level and multi-scale interactive process involving molecular levels, cellular structures, and brain network functions.
[Keywords] neck pain;imaging transcriptomics;functional connectivity;chronic pain development;magnetic resonance imaging;cross-scale mechanisms

GAO Zhen1, 2   CUI Mengjie3   WANG Haijun3   JI Laixi3*  

1 Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong 030619, China

2 Traditional Chinese Medicine and Rehabilitation Department, Taiyuan Peace Hospital, Taiyuan 030024, China

3 The Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong 030619, China

Corresponding author: JI L X, E-mail: jlx@sxtcm.edu.cn

Conflicts of interest   None.

Received  2024-11-22
Accepted  2025-02-28
DOI: 10.12015/issn.1674-8034.2025.03.003
Cite this article as: GAO Z, CUI M J, WANG H J, et al. Investigation of central cross-scale mechanisms in the chronification of neck pain via imaging transcriptomics[J]. Chin J Magn Reson Imaging, 2025, 16(3): 18-23. DOI:10.12015/issn.1674-8034.2025.03.003.

[1]
RAJA S N, CARR D B, COHEN M, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises[J]. Pain, 2020, 161(9): 1976-1982. DOI: 10.1097/j.pain.0000000000001939.
[2]
VELLUCCI R. Heterogeneity of chronic pain[J]. Clin Drug Investig, 2012, 32(Suppl 1): 3-10. DOI: 10.2165/11630030-000000000-00000.
[3]
COHEN S P, VASE L, HOOTEN W M. Chronic pain: an update on burden, best practices, and new advances[J]. Lancet, 2021, 397(10289): 2082-2097. DOI: 10.1016/S0140-6736(21)00393-7.
[4]
HURWITZ E L, RANDHAWA K, YU H N, et al. The global spine care initiative: a summary of the global burden of low back and neck pain studies[J]. Eur Spine J, 2018, 27(Suppl 6): 796-801. DOI: 10.1007/s00586-017-5432-9.
[5]
KUMAGAI G, WADA K, KUDO H, et al. The effect of low back pain and neck-shoulder stiffness on health-related quality of life: a cross-sectional population-based study[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 14 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/33402157/. DOI: 10.1186/s12891-020-03871-5.
[6]
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159): 1789-1858. DOI: 10.1016/S0140-6736(18)32279-7.
[7]
NEES F, LÖFFLER M, USAI K, et al. Hypothalamic-pituitary-adrenal axis feedback sensitivity in different states of back pain[J/OL]. Psychoneuroendocrinology, 2019, 101: 60-66 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/30414593/. DOI: 10.1016/j.psyneuen.2018.10.026.
[8]
VACHON-PRESSEAU E, MARTEL M O, ROY M, et al. Acute stress contributes to individual differences in pain and pain-related brain activity in healthy and chronic pain patients[J]. J Neurosci, 2013, 33(16): 6826-6833. DOI: 10.1523/JNEUROSCI.4584-12.2013.
[9]
APKARIAN V A, HASHMI J A, BALIKI M N. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain[J]. Pain, 2011, 152(3Suppl): S49-S64. DOI: 10.1016/j.pain.2010.11.010.
[10]
TU Y H, CAO J, BI Y Z, et al. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers[J]. Sci China Life Sci, 2021, 64(6): 879-896. DOI: 10.1007/s11427-020-1822-4.
[11]
MAKARY M M, POLOSECKI P, CECCHI G A, et al. Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain[J]. Proc Natl Acad Sci USA, 2020, 117(18): 10015-10023. DOI: 10.1073/pnas.1918682117.
[12]
BOSAK N, BRANCO P, KUPERMAN P, et al. Brain connectivity predicts chronic pain in acute mild traumatic brain injury[J]. Ann Neurol, 2022, 92(5): 819-833. DOI: 10.1002/ana.26463.
[13]
CHAO C C, TSENG M T, HSIEH P C, et al. Brain mechanisms of pain and dysautonomia in diabetic neuropathy: connectivity changes in thalamus and hypothalamus[J/OL]. J Clin Endocrinol Metab, 2022, 107(3): e1167-e1180 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/34665863/. DOI: 10.1210/clinem/dgab754.
[14]
HIBAR D P, STEIN J L, RENTERIA M E, et al. Common genetic variants influence human subcortical brain structures[J]. Nature, 2015, 520(7546): 224-229. DOI: 10.1038/nature14101.
[15]
ELMAN J A, PANIZZON M S, HAGLER D J, et al. Genetic and environmental influences on cortical mean diffusivity[J/OL]. Neuroimage, 2017, 146: 90-99 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/27864081/. DOI: 10.1016/j.neuroimage.2016.11.032.
[16]
FORNITO A, ARNATKEVIČIŪTĖ A, FULCHER B D. Bridging the gap between connectome and transcriptome[J]. Trends Cogn Sci, 2019, 23(1): 34-50. DOI: 10.1016/j.tics.2018.10.005.
[17]
JOHNSTON K J A, COTE A C, HICKS E, et al. Genetically regulated gene expression in the brain associated with chronic pain: relationships with clinical traits and potential for drug repurposing[J]. Biol Psychiatry, 2024, 95(8): 745-761. DOI: 10.1016/j.biopsych.2023.08.023.
[18]
DORFSCHMIDT L, BETHLEHEM R A, SEIDLITZ J, et al. Sexually divergent development of depression-related brain networks during healthy human adolescence[J/OL]. Sci Adv, 2022, 8(21): eabm7825 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/35622918/. DOI: 10.1126/sciadv.abm7825.
[19]
BLANPIED P R, GROSS A R, ELLIOTT J M, et al. Neck pain: revision 2017[J/OL]. J Orthop Phys Phys Ther, 2017, 47(7): A1-A83 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/28666405/. DOI: 10.2519/jospt.2017.0302.
[20]
DENG L L, LIU J, LIU H H, et al. The functional connectivity of hypothalamus in T2DM patients: a resting-state f MRI study[J]. Chin J Magn Reson Imag, 2016, 7(4): 270-276. DOI: 10.12015/issn.1674-8034.2016.04.006.
[21]
HAWRYLYCZ M J, LEIN E S, GUILLOZET-BONGAARTS A L, et al. An anatomically comprehensive atlas of the adult human brain transcriptome[J]. Nature, 2012, 489(7416): 391-399. DOI: 10.1038/nature11405.
[22]
KATAOKA N, SHIMA Y T, NAKAJIMA K, et al. A central master driver of psychosocial stress responses in the rat[J]. Science, 2020, 367(6482): 1105-1112. DOI: 10.1126/science.aaz4639.
[23]
METZ A E, YAU H J, CENTENO M V, et al. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain[J]. Proc Natl Acad Sci U S A, 2009, 106(7): 2423-2428. DOI: 10.1073/pnas.0809897106.
[24]
DIORIO D, VIAU V, MEANEY M J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress[J]. J Neurosci, 1993, 13(9): 3839-3847. DOI: 10.1523/JNEUROSCI.13-09-03839.1993.
[25]
LE L H L, BROWN V A V, MOL S, et al. Sex differences in pain catastrophizing and its relation to the transition from acute pain to chronic pain[J/OL]. BMC Anesthesiol, 2024, 24(1): 127 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/38566044/. DOI: 10.1186/s12871-024-02496-8.
[26]
LI A N, LIU Y L, ZHANG Q S, et al. Disrupted population coding in the prefrontal cortex underlies pain aversion[J/OL]. Cell Rep, 2021, 37(6): 109978 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/34758316/. DOI: 10.1016/j.celrep.2021.109978.
[27]
THOMPSON J M, NEUGEBAUER V. Cortico-limbic pain mechanisms[J/OL]. Neurosci Lett, 2019, 702: 15-23 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/30503916/. DOI: 10.1016/j.neulet.2018.11.037.
[28]
SCHUMACHER M A. Peripheral neuroinflammation and pain: how acute pain becomes chronic[J]. Curr Neuropharmacol, 2024, 22(1): 6-14. DOI: 10.2174/1570159X21666230808111908.
[29]
ECHEVERRIA-VILLALOBOS M, TORTORICI V, BRITO B E, et al. The role of neuroinflammation in the transition of acute to chronic pain and the opioid-induced hyperalgesia and tolerance[J/OL]. Front Pharmacol, 2023, 14: 1297931 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/38161698/. DOI: 10.3389/fphar.2023.1297931.
[30]
WANG W, ZHANG X Y, BAI X Y, et al. Gamma-aminobutyric acid and glutamate/glutamine levels in the dentate nucleus and periaqueductal gray with episodic and chronic migraine: a proton magnetic resonance spectroscopy study[J/OL]. J Headache Pain, 2022, 23(1): 83 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/35840907/. DOI: 10.1186/s10194-022-01452-6.
[31]
VARADI G. Mechanism of analgesia by gabapentinoid drugs: involvement of modulation of synaptogenesis and trafficking of glutamate-gated ion channels[J]. J Pharmacol Exp Ther, 2024, 388(1): 121-133. DOI: 10.1124/jpet.123.001669.
[32]
ZHUO M. Long-term plasticity of NMDA GluN2B (NR2B) receptor in anterior cingulate cortical synapses[J/OL]. Mol Pain, 2024, 20: 17448069241230258 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/38246915/. DOI: 10.1177/17448069241230258.
[33]
YIN J B, LIANG S H, LI F, et al. dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors[J]. J Clin Invest, 2020, 130(12): 6555-6570. DOI: 10.1172/JCI127607.
[34]
XIE R G, XU G Y, WU S X, et al. Presynaptic glutamate receptors in nociception[J/OL]. Pharmacol Ther, 2023, 251: 108539 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/37783347/. DOI: 10.1016/j.pharmthera.2023.108539.
[35]
LIU Y J, LI Y L, FANG Z H, et al. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain[J/OL]. Front Cell Neurosci, 2022, 16: 999509 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/36238833/. DOI: 10.3389/fncel.2022.999509.
[36]
MAZZITELLI M, PRESTO P, ANTENUCCI N, et al. Recent advances in the modulation of pain by the metabotropic glutamate receptors[J/OL]. Cells, 2022, 11(16): 2608 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/36010684/. DOI: 10.3390/cells11162608.
[37]
NAYLOR B, HESAM-SHARIATI N, MCAULEY J H, et al. Reduced glutamate in the medial prefrontal cortex is associated with emotional and cognitive dysregulation in people with chronic pain[J/OL]. Front Neurol, 2019, 10: 1110 [2024-11-21]. https://pubmed.ncbi.nlm.nih.gov/31849800/. DOI: 10.3389/fneur.2019.01110.
[38]
JIA K. Study on the mechanism of PVN-PrL neural circuit regulating hyperalgesia in rats with lumbar disc herniation[D]. Suzhou: Soochow University, 2023. DOI: 10.27351/d.cnki.gszhu.2023.003498.

PREV A quantitative magnetization rate imaging-based study of differences in brain iron content and its association with symptoms in younger autistic children
NEXT The predictive performance of 3D-HRVWI radiomics features of intracranial arterial culprit plaque combined with intraplaque hemorrhage in predicting recurrence in patients with ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn