Share:
Share this content in WeChat
X
Clinical Article
Diagnostic value of radiomics for axillary lymph node metastasis in breast cancer: A Meta-analysis
QIAN Jifang  ZHU Dalin  ZHANG Xuxia  ZHAI Xiaojing  CAO Shan  SUN Bixia 

Cite this article as: QIAN J F, ZHU D L, ZHANG X X, et al. Diagnostic value of radiomics for axillary lymph node metastasis in breast cancer: A Meta-analysis[J]. Chin J Magn Reson Imaging, 2025, 16(3): 44-50. DOI:10.12015/issn.1674-8034.2025.03.007.


[Abstract] Objective To evaluate the performance of radiomics in predicting axillary lymph node metastasis (ALNM) including sentinel lymph node metastasis (SLNM) in breast cancer by Meta analysis.Materials and Methods A systematic search was conducted in the electronic databases PubMed, Embase, Web of Science, Cochrane Library, CNKI, and Wanfang database for relevant studies published between January 1, 2018 and February 23, 2024. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess the quality of the included studies. The diagnostic odds ratio (DOR), sensitivity, specificity, and summary receiver operating characteristic (SROC) curve were calculated to evaluate the diagnostic value of imagingomics for ALNM, including SLNM, in breast cancer patients. Spearman correlation coefficients were calculated to assess threshold effects, and meta-regression and subgroup analyses were performed to explore possible causes of heterogeneity.Results A total of 22 studies involving 4230 patients were included in the meta-analysis, summarizing the overall diagnostic accuracy of imaging-omics detection of ALNM, including SLNM: DOR was 34 [95% confidence interval (CI): 21 to 54]; sensitivity 87% (95% CI: 85% to 89%); specificity 76% (95% CI: 75% to 78%); The area under the curve (AUC) of the SROC curve was 0.92, and Q* was 0.86; The positive likelihood ratio was 5.30 (95% CI: 3.70 to 7.60); The negative likelihood ratio was 0.17 (95% CI: 0.13 to 0.22). Meta-analysis showed that there was significant heterogeneity among the included studies, and there was no evidence of threshold effect.Conclusions Our results suggest that imagingomics has good diagnostic performance in predicting ALNM, including SLNM, in breast cancer. Therefore, we recommend this method as a clinical method for preoperative identification of ALNM and SLNM.
[Keywords] breast cancer;axillary lymph node metastasis;radiomics;Meta-analysis;magnetic resonance imaging

QIAN Jifang   ZHU Dalin   ZHANG Xuxia   ZHAI Xiaojing   CAO Shan   SUN Bixia*  

Medical Imaging Center, Gansu Provincial Matemity and Child-care Hospital, Lanzhou 730050, China

Corresponding author: SUN B X, E-mail: 458777329@qq.com

Conflicts of interest   None.

Received  2024-07-10
Accepted  2024-12-10
DOI: 10.12015/issn.1674-8034.2025.03.007
Cite this article as: QIAN J F, ZHU D L, ZHANG X X, et al. Diagnostic value of radiomics for axillary lymph node metastasis in breast cancer: A Meta-analysis[J]. Chin J Magn Reson Imaging, 2025, 16(3): 44-50. DOI:10.12015/issn.1674-8034.2025.03.007.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
CATTELL R, YING J, LEI L, et al. Preoperative prediction of lymph node metastasis using deep learning-based features[J/OL]. Vis Comput Ind Biomed Art, 2022, 5(1): 8 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/35254557/. DOI: 10.1186/s42492-022-00104-5.
[3]
LYMAN G H, SOMERFIELD M R, BOSSERMAN L D, et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American society of clinical oncology clinical practice guideline update[J]. J Clin Oncol, 2017, 35(5): 561-564. DOI: 10.1200/JCO.2016.71.0947.
[4]
DING Y, YANG F, HAN M X, et al. Multi-center study on predicting breast cancer lymph node status from core needle biopsy specimens using multi-modal and multi-instance deep learning[J/OL]. NPJ Breast Cancer, 2023, 9(1): 58 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/37443117/. DOI: 10.1038/s41523-023-00562-x.
[5]
BI W L, HOSNY A, SCHABATH M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. DOI: 10.3322/caac.21552.
[6]
CHENG J Y, REN C Y, LIU G Y, et al. Development of high-resolution dedicated PET-based radiomics machine learning model to predict axillary lymph node status in early-stage breast cancer[J/OL]. Cancers, 2022, 14(4): 950 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/35205699/. DOI: 10.3390/cancers14040950.
[7]
MOSES L E, SHAPIRO D, LITTENBERG B. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations[J]. Stat Med, 1993, 12(14): 1293-1316. DOI: 10.1002/sim.4780121403.
[8]
CHEN J M, ZHU H Y, GAO J, et al. Radiomics models based on clinical-pathology and conventional and functional MRI for predicting lymph node metastases of breast cancer axillary[J]. Chin J Med Imag Technol, 2021, 37(6): 885-890. DOI: 10.13929/j.issn.1003-3289.2021.06.022.
[9]
JIN H, LUO W Q, JI Z P, et al. Predicting the risk of axillary lymph node metastasis by using the logistic regression equation of ultrasound imaging features of breast cancer[J]. Chin J Ultrasound Med, 2021, 37(2): 139-142.
[10]
MAO N, YIN P, ZHANG H C, et al. Mammography-based radiomics for predicting the risk of breast cancer recurrence: a multicenter study[J/OL]. Br J Radiol, 2021, 94(1127): 20210348 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/34520235/. DOI: 10.1259/bjr.20210348.
[11]
ZHAO N N, ZHU Y, TANG X M, et al. Prediction of axillary lymph node metastasis in breast cancer based on intra-tumoral and peri-tumoral MRI radiomics nomogram[J]. Chin J Magn Reson Imag, 2023, 14(3): 81-87, 94. DOI: 10.12015/issn.1674-8034.2023.03.014.
[12]
WANG Y X, SHANG Y Y, GUO Y X, et al. Value of DCE-MRI based radiomics features for prediction of axillary lymph node metastasis in breast carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(3): 21-27. DOI: 10.12015/issn.1674-8034.2023.03.005.
[13]
ZHANG J W, ZHANG Z S, MAO N, et al. Radiomics nomogram for predicting axillary lymph node metastasis in breast cancer based on DCE-MRI: a multicenter study[J]. J Xray Sci Technol, 2023, 31(2): 247-263. DOI: 10.3233/XST-221336.
[14]
ROMEO V, KAPETAS P, CLAUSER P, et al. Simultaneous 18F-FDG PET/MRI radiomics and machine learning analysis of the primary breast tumor for the preoperative prediction of axillary lymph node status in breast cancer[J/OL]. Cancers, 2023, 15(20): 5088 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/37894455/. DOI: 10.3390/cancers15205088.
[15]
AREFAN D, CHAI R M, SUN M, et al. Machine learning prediction of axillary lymph node metastasis in breast cancer: 2D versus 3D radiomic features[J]. Med Phys, 2020, 47(12): 6334-6342. DOI: 10.1002/mp.14538.
[16]
CUI X Y, WANG N, ZHAO Y, et al. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Radiomics Features of DCE-MRI[J/OL]. Sci Rep, 2019, 9(1): 2240 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/30783148/. DOI: 10.1038/s41598-019-38502-0.
[17]
HAN L, ZHU Y B, LIU Z Y, et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer[J]. Eur Radiol, 2019, 29(7): 3820-3829. DOI: 10.1007/s00330-018-5981-2.
[18]
LIU J, SUN D, CHEN L L, et al. Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2019, 9: 980 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/31632912/. DOI: 10.3389/fonc.2019.00980.
[19]
LIU S H, PENG R R, LI F Z, et al. A radiomic model based on dynamic contrast enhanced MRI (DCE-MRI) for predicting axillary lymph node (ALN) metastasis in patients with breast cancer[J]. Jiangxi Med J, 2021, 56(10): 1615-1618, 1638. DOI: 10.3969/j.issn.1006-2238.2021.10.009.
[20]
SANTUCCI D, FAIELLA E, CORDELLI E, et al. 3T MRI-radiomic approach to predict for lymph node status in breast cancer patients[J/OL]. Cancers, 2021, 13(9): 2228 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/34066451/. DOI: 10.3390/cancers13092228.
[21]
SONG D L, YANG F, ZHANG Y J, et al. Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer[J/OL]. Cancer Imaging, 2022, 22(1): 17 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/35379339/. DOI: 10.1186/s40644-022-00450-w.
[22]
TAN H N, GAN F W, WU Y P, et al. Preoperative prediction of axillary lymph node metastasis in breast carcinoma using radiomics features based on the fat-suppressed T2 sequence[J]. Acad Radiol, 2020, 27(9): 1217-1225. DOI: 10.1016/j.acra.2019.11.004.
[23]
XIA X D, DUAN C Z, LI M, et al. Prediction of axillary lymph node metastasis in breast cancer based on radiomics nomogram of MRI[J]. Chin J Magn Reson Imag, 2022, 13(1): 118-122. DOI: 10.12015/issn.1674-8034.2022.01.024.
[24]
MA L N, HA Z L, WANG S Y, et al. Value of MRI in the Diagnosis of Axillary Lymph Node Metastasis of Early Invasive Breast Cancer[J]. Chinese Journal of CT and MRI, 2022, (7): 88-91. DOI: 10.3969/j.issn.1672-5131.2022.07.029.
[25]
BAO L N, WANG Y, CHEN D, et al. Ultrasound-based radiomics to predict sentinel lymph node metastasis in breast cancer[J]. J Pract Med, 2021, 37(15): 2007-2011. DOI: 10.3969/j.issn.1006-5725.2021.15.020.
[26]
GUO X, LIU Z Y, SUN C X, et al. Deep learning radiomics of ultrasonography: identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer[J/OL]. EBioMedicine, 2020, 60: 103018 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/32980697/. DOI: 10.1016/j.ebiom.2020.103018.
[27]
SUN Q C, LIN X N, ZHAO Y S, et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region[J/OL]. Front Oncol, 2020, 10: 53 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/32083007/. DOI: 10.3389/fonc.2020.00053.
[28]
SONG B I. A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer[J]. Breast Cancer, 2021, 28(3): 664-671. DOI: 10.1007/s12282-020-01202-z.
[29]
GONG X R, GUO Y X, ZHU T T, et al. Diagnostic performance of radiomics in predicting axillary lymph node metastasis in breast cancer: a systematic review and meta-analysis[J/OL]. Front Oncol, 2022, 12: 1046005 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/36518318/. DOI: 10.3389/fonc.2022.1046005.
[30]
CALABRESE A, SANTUCCI D, LANDI R, et al. Radiomics MRI for lymph node status prediction in breast cancer patients: the state of art[J]. J Cancer Res Clin Oncol, 2021, 147(6): 1587-1597. DOI: 10.1007/s00432-021-03606-6.
[31]
ZHU Y D, YANG L, SHEN H L. Value of the application of CE-MRI radiomics and machine learning in preoperative prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2021, 11: 757111 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/34868967/. DOI: 10.3389/fonc.2021.757111.
[32]
LI L J, WU C Q, HUANG Y Q, et al. Radiomics for the preoperative evaluation of microvascular invasion in hepatocellular carcinoma: a meta-analysis[J/OL]. Front Oncol, 2022, 12: 831996 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/35463303/. DOI: 10.3389/fonc.2022.831996.
[33]
LI Y H, ZHANG G Q, SHAN Y C, et al. Non-invasive assessment of intracranial hypertension in patients with traumatic brain injury using computed tomography radiomic features: a pilot study[J]. J Neurotrauma, 2023, 40(3/4): 250-259. DOI: 10.1089/neu.2022.0277.
[34]
PRINZI F, ORLANDO A, GAGLIO S, et al. Interpretable radiomic signature for breast microcalcification detection and classification[J]. J Imaging Inform Med, 2024, 37(3): 1038-1053. DOI: 10.1007/s10278-024-01012-1.
[35]
ZHANG J, LI L C, ZHE X, et al. The diagnostic performance of machine learning-based radiomics of DCE-MRI in predicting axillary lymph node metastasis in breast cancer: a meta-analysis[J/OL]. Front Oncol, 2022, 12: 799209 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/35186739/. DOI: 10.3389/fonc.2022.799209.
[36]
CHEN M Z, KONG C L, LIN G H, et al. Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study[J/OL]. EClinicalMedicine, 2023, 63: 102176 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/37662514/. DOI: 10.1016/j.eclinm.2023.102176.
[37]
PARK S, KIM J H, CHA Y K, et al. Application of machine learning algorithm in predicting axillary lymph node metastasis from breast cancer on preoperative chest CT[J/OL]. Diagnostics, 2023, 13(18): 2953 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/37761320/. DOI: 10.3390/diagnostics13182953.
[38]
HAJIESMAILPOOR Z, TABNAK P, BARADARAN B, et al. Diagnostic performance of CT scan-based radiomics for prediction of lymph node metastasis in gastric cancer: a systematic review and meta-analysis[J/OL]. Front Oncol, 2023, 13: 1185663 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/37936604/. DOI: 10.3389/fonc.2023.1185663.

PREV Comparative study on the display effect of two three-dimensional magnetic resonance neuroimaging techniques on mandibular nerve extracranial segment in patients with nasopharyngeal carcinoma
NEXT CEMRI-based intratumoral and peritumoral radiomics for predicting the degree of pathological differentiation of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn