Share:
Share this content in WeChat
X
Clinical Article
Predicting vessels encapsulating tumor clusters in hepatocellular carcinoma using combination clinical biomarkers and MR features nomogram
MENG Cunzhong  ZHAO Fan  SHENG Yuwu 

Cite this article as: MENG C Z, ZHAO F, SHENG Y W. Predicting vessels encapsulating tumor clusters in hepatocellular carcinoma using combination clinical biomarkers and MR features nomogram[J]. Chin J Magn Reson Imaging, 2025, 16(3): 58-62. DOI:10.12015/issn.1674-8034.2025.03.009.


[Abstract] Objective To develop a nomogram combining clinical biomarkers and MRI features to predict vessels encapsulating tumor clusters (VETC) in hepatocellular carcinoma (HCC).Materials and Methods Retrospective analysis of clinical and imaging data of 213 patients with surgical pathologically confirmed HCC, and the patients were divided into training and validation cohorts in a ratio of 7∶3 according to chronological order, and the differences in clinical, pathological and imaging features between the two groups were compared. Univariate and multivariate logistic regression analysis were used to analyze the independent risk factors, including clinical biomarkers and imaging features for VETC in training cohort. Nomogram for predicting VETC were developed based on the results of regression analysis, and this nomogram was validated using the validation cohort.Results One hundred and forty-eight patients were included in the training cohort and 65 patients in the validation cohort, and there was no statistical difference in clinical, pathological and imaging features between the two groups. In the logistic regression analysis, AFP > 400 ng/mL, larger tumor diameter, greater number of tumors, non-smooth tumor margin and presence of intra-tumoral artery were the independent risk factors for predicting VETC. The C index of the nomogram developed based on the above factors was 0.825 and 0.817 in the training and validation cohort, respectively.Conclusions The nomogram developed by clinical biomarkers and MRI features has good accuracy in predicting VETC and can directly visualize the probability of VETC, which can facilitate personalized treatment plans.
[Keywords] hepatocellular carcinoma;vessels encapsulating tumor clusters;clinical biomarker;magnetic resonance imaging;imaging feature;nomogram

MENG Cunzhong   ZHAO Fan   SHENG Yuwu*  

Department of CT/MRI, Wuwei People's Hospital, Wuwei 733000, China

Corresponding author: SHENG Y W, E-mail: 631167315@qq.com

Conflicts of interest   None.

Received  2024-10-23
Accepted  2025-02-27
DOI: 10.12015/issn.1674-8034.2025.03.009
Cite this article as: MENG C Z, ZHAO F, SHENG Y W. Predicting vessels encapsulating tumor clusters in hepatocellular carcinoma using combination clinical biomarkers and MR features nomogram[J]. Chin J Magn Reson Imaging, 2025, 16(3): 58-62. DOI:10.12015/issn.1674-8034.2025.03.009.

[1]
GANESAN P, KULIK L M. Hepatocellular carcinoma: new developments[J]. Clin Liver Dis, 2023, 27(1): 85-102. DOI: 10.1016/j.cld.2022.08.004.
[2]
SINGAL A G, KANWAL F, LLOVET J M. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy[J]. Nat Rev Clin Oncol, 2023, 20(12): 864-884. DOI: 10.1038/s41571-023-00825-3.
[3]
WANG Y, DENG B C. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers[J]. Cancer Metastasis Rev, 2023, 42(3): 629-652. DOI: 10.1007/s10555-023-10084-4.
[4]
RENNE S L, WOO H Y, ALLEGRA S, et al. Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 183-195. DOI: 10.1002/hep.30814.
[5]
RHEE H, PARK Y N, CHOI J Y. Advances in understanding hepatocellular carcinoma vasculature: implications for diagnosis, prognostication, and treatment[J]. Korean J Radiol, 2024, 25(10): 887-901. DOI: 10.3348/kjr.2024.0307.
[6]
TOSHIDA K, ITOH S, TOSHIMA T, et al. Clinical significance of mechanistic target of rapamycin expression in vessels that encapsulate tumor cluster-positive hepatocellular carcinoma patients who have undergone living donor liver transplantation[J]. Ann Gastroenterol Surg, 2023, 8(1): 163-171. DOI: 10.1002/ags3.12735.
[7]
ZHANG P Y, ONO A, FUJII Y, et al. The presence of vessels encapsulating tumor clusters is associated with an immunosuppressive tumor microenvironment in hepatocellular carcinoma[J]. Int J Cancer, 2022, 151(12): 2278-2290. DOI: 10.1002/ijc.34247.
[8]
SHIGEMATSU Y, TANAKA K, AMORI G, et al. Potential involvement of oncostatin M in the immunosuppressive tumor immune microenvironment in hepatocellular carcinoma with vessels encapsulating tumor clusters[J]. Hepatol Res, 2024, 54(4): 368-381. DOI: 10.1111/hepr.13988.
[9]
WANG Y Y, DONG K, WANG K, et al. Effect of vessels that encapsulate tumor clusters (VETC) on the prognosis of different stages of hepatocellular carcinoma after hepatectomy[J]. Dig Liver Dis, 2023, 55(9): 1288-1294. DOI: 10.1016/j.dld.2023.03.008.
[10]
LIN W P, LU L H, ZHENG R L, et al. Vessels encapsulating tumor clusters: a novel efficacy predictor of hepatic arterial infusion chemotherapy in unresectable hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2023, 149(19): 17231-17239. DOI: 10.1007/s00432-023-05444-0.
[11]
KAWASAKI J, TOSHIMA T, YOSHIZUMI T, et al. Prognostic impact of vessels that encapsulate tumor cluster (VETC) in patients who underwent liver transplantation for hepatocellular carcinoma[J]. Ann Surg Oncol, 2021, 28(13): 8186-8195. DOI: 10.1245/s10434-021-10209-5.
[12]
WANG M M, CAO L, WANG Y Z, et al. The prognostic value of vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma: a systematic review and meta-analysis[J]. Clin Transl Oncol, 2024, 26(8): 2037-2046. DOI: 10.1007/s12094-024-03427-2.
[13]
CHEN H L, DONG H, HE R L, et al. Optimizing predictions: improved performance of preoperative gadobenate-enhanced MRI hepatobiliary phase features in predicting vessels encapsulating tumor clusters in hepatocellular carcinoma-a multicenter study[J]. Abdom Radiol, 2024, 49(10): 3412-3426. DOI: 10.1007/s00261-024-04283-y.
[14]
GAO M H, ZHOU Y R, ZHU S C. Research progress in evaluating microvascular metastases patterns of hepatocellular carcinoma by Gd-EOB-DTPA enhanced MRI[J]. Chin J Magn Reson Imag, 2023, 14(7): 160-165. DOI: 10.12015/issn.1674-8034.2023.07.029.
[15]
ZHU Y Y, YANG L L, WANG M, et al. Preoperative MRI features to predict vessels that encapsulate tumor clusters and microvascular invasion in hepatocellular carcinoma[J/OL]. Eur J Radiol, 2023, 167: 111089 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/37713969/. DOI: 10.1016/j.ejrad.2023.111089.
[16]
YANG J W, DONG X, WANG G L, et al. Preoperative MRI features for characterization of vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma[J]. Abdom Radiol, 2023, 48(2): 554-566. DOI: 10.1007/s00261-022-03740-w.
[17]
QU Q, LIU Z X, LU M T, et al. Preoperative gadoxetic acid-enhanced MRI features for evaluation of vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma: creating nomograms for risk assessment[J]. J Magn Reson Imaging, 2024, 60(3): 1094-1110. DOI: 10.1002/jmri.29187.
[18]
USTA S, KAYAALP C. Tumor diameter for hepatocellular carcinoma: why should size matter?[J]. J Gastrointest Cancer, 2020, 51(4): 1114-1117. DOI: 10.1007/s12029-020-00483-z.
[19]
FENG Z C, LI H L, ZHAO H F, et al. Preoperative CT for characterization of aggressive macrotrabecular-massive subtype and vessels that encapsulate tumor clusters pattern in hepatocellular carcinoma[J]. Radiology, 2021, 300(1): 219-229. DOI: 10.1148/radiol.2021203614.
[20]
WANG M M, CAO L, WANG Y Z, et al. Prediction of vessels encapsulating tumor clusters pattern and prognosis of hepatocellular carcinoma based on preoperative gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid magnetic resonance imaging[J]. J Gastrointest Surg, 2024, 28(4): 442-450. DOI: 10.1016/j.gassur.2024.02.004.
[21]
AKIBA J, NAKAYAMA M, KONDO R, et al. Immunophenotypes and tumor immune microenvironment in hepatocellular carcinoma with macrotrabecular massive and vessels encapsulating tumor clusters[J]. In Vivo, 2024, 38(2): 640-646. DOI: 10.21873/invivo.13483.
[22]
PAN J H, HUANG H Z, ZHANG S Y, et al. Intraindividual comparison of CT and MRI for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma[J]. Eur Radiol, 2025, 35(1): 61-72. DOI: 10.1007/s00330-024-10944-9.
[23]
DONG X, YANG J W, ZHANG B H, et al. Deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2024, 59(1): 108-119. DOI: 10.1002/jmri.28745.
[24]
ZHANG C, ZHONG H, ZHAO F, et al. Preoperatively predicting vessels encapsulating tumor clusters in hepatocellular carcinoma: Machine learning model based on contrast-enhanced computed tomography[J]. World J Gastrointest Oncol, 2024, 16(3): 857-874. DOI: 10.4251/wjgo.v16.i3.857.
[25]
FAN Y F, YU Y X, WANG X M, et al. Texture analysis based on Gd-EOB-DTPA-enhanced MRI for identifying vessels encapsulating tumor clusters (VETC)-positive hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 349-359. DOI: 10.2147/JHC.S293755.
[26]
CHEN H L, HE R L, GU M T, et al. Nomogram prediction of vessels encapsulating tumor clusters in small hepatocellular carcinoma≤3 cm based on enhanced magnetic resonance imaging[J]. World J Gastrointest Oncol, 2024, 16(5): 1808-1820. DOI: 10.4251/wjgo.v16.i5.1808.
[27]
ZHOU L S, QU Y, QUAN G N, et al. Nomogram for predicting microvascular invasion in hepatocellular carcinoma using gadoxetic acid-enhanced MRI and intravoxel incoherent motion imaging[J]. Acad Radiol, 2024, 31(2): 457-466. DOI: 10.1016/j.acra.2023.06.028.
[28]
CHEN F M, DU M Z, QI X M, et al. Nomogram estimating vessels encapsulating tumor clusters in hepatocellular carcinoma from preoperative gadoxetate disodium-enhanced MRI[J]. J Magn Reson Imaging, 2023, 57(6): 1893-1905. DOI: 10.1002/jmri.28488.
[29]
FAN Y F, YU Y X, HU M J, et al. Imaging features based on Gd-EOB-DTPA-enhanced MRI for predicting vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma[J/OL]. Br J Radiol, 2021, 94(1119): 20200950 [2024-09-20]. https://pubmed.ncbi.nlm.nih.gov/33417489/. DOI: 10.1259/bjr.20200950.
[30]
YU Y X, FAN Y F, WANG X M, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(2): 959-970. DOI: 10.1007/s00330-021-08250-9.

PREV CEMRI-based intratumoral and peritumoral radiomics for predicting the degree of pathological differentiation of hepatocellular carcinoma
NEXT The value of combining whole-tumor ADC histogram parameters with imaging biomarkers in predicting perineural and lymphovascular invasion in rectal adenocarcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn