Share:
Share this content in WeChat
X
Clinical Article
The value of combining whole-tumor ADC histogram parameters with imaging biomarkers in predicting perineural and lymphovascular invasion in rectal adenocarcinoma
WANG Haisheng  YUAN Long  ZHU Kaibo  XI Huaze  LIU Jianqiang  LUO Pan  GAO Rong  ZHOU Junlin  LIU Hong 

Cite this article as: WANG H S, YUAN L, ZHU K B, et al. The value of combining whole-tumor ADC histogram parameters with imaging biomarkers in predicting perineural and lymphovascular invasion in rectal adenocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(3): 63-69, 95. DOI:10.12015/issn.1674-8034.2025.03.010.


[Abstract] Objective To explore the value of combining whole-tumor apparent diffusion coefficient (ADC) histogram parameters with imaging biomarkers in predicting perineural invasion (PNI) and lymphovascular invasion (LVI) in rectal adenocarcinoma.Materials and Methods A retrospective analysis was conducted on the preoperative clinical and magnetic resonance imaging (MRI) data of 102 patients with pathologically confirmed rectal adenocarcinoma. Based on pathological results, patients were divided into two groups: the PNI/LVI-positive group (with either or both PNI and LVI positive) and the PNI/LVI-negative group (both PNI and LVI negative). Using FireVoxel software, regions of interest (ROIs) were delineated to obtain ADC histogram parameters of the primary tumor, including ADC mean (ADC-mean), standard deviation, coefficient of variation, entropy, skewness, and the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentiles of ADC (ADC-1%, ADC-5%, ADC-10%, ADC-25%, ADC-50%, ADC-75%, ADC-90%, ADC-95%, ADC-99%). Differences in ADC histogram parameters, MRI assessment extramural venous invasion (mrEMVI) status, tumor location, mrT stage, and mrN stage between the PNI/LVI-positive and negative groups were analyzed. Parameters with statistically significant differences (P < 0.05) were selected through univariate analysis and used to construct a multivariate logistic regression model (ADC histogram model). Additionally, non-histogram parameters that were also statistically significant (P < 0.05) in univariate analysis were included in a multivariate logistic regression analysis to establish a combined predictive model. The predictive performance of the ADC histogram model and the combined model was evaluated using receiver operating characteristic (ROC) curve analysis, and the DeLong test was used to compare the differences in the area under the curve (AUC) between the models.Results Significant differences were observed between the PNI/LVI-positive and negative groups in ADC-mean, standard deviation, ADC-1%, ADC-75%, ADC-95%, ADC-99%, and mrEMVI (P < 0.05). Among these continuous variables, ADC-99% had the highest diagnostic performance (AUC, sensitivity, and specificity were 0.835, 77.1%, and 86.6%, respectively). The combined model, constructed using ADC-mean, standard deviation, ADC-1%, ADC-75%, ADC-95%, ADC-99%, and mrEMVI, had an AUC, sensitivity, and specificity of 0.918, 89.6%, and 82.9%, respectively, outperforming the histogram model (AUC = 0.898) and individual whole-tumor ADC histogram parameters (AUC = 0.670 to 0.835). In addition to the combined model and the histogram model, there were statistically significant differences between the two models and the histogram parameters (P < 0.05).Conclusions Whole-tumor ADC histogram parameters and imaging biomarkers (mrEMVI) can be used to predict the neurovascular status of rectal adenocarcinoma preoperatively. The predictive value is higher when both are combined.
[Keywords] rectal adenocarcinoma;perineural and lymphovascular invasion;magnetic resonance imaging;apparent diffusion coefficient;histogram;imaging biomarkers

WANG Haisheng   YUAN Long   ZHU Kaibo   XI Huaze   LIU Jianqiang   LUO Pan   GAO Rong   ZHOU Junlin   LIU Hong*  

Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China

Corresponding author: LIU H, E-mail: liu20190410@163.com

Conflicts of interest   None.

Received  2024-11-27
Accepted  2025-03-07
DOI: 10.12015/issn.1674-8034.2025.03.010
Cite this article as: WANG H S, YUAN L, ZHU K B, et al. The value of combining whole-tumor ADC histogram parameters with imaging biomarkers in predicting perineural and lymphovascular invasion in rectal adenocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(3): 63-69, 95. DOI:10.12015/issn.1674-8034.2025.03.010.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
SIEGEL R L, WAGLE N S, CERCEK A, et al. Colorectal cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(3): 233-254. DOI: 10.3322/caac.21772.
[3]
KIM S, HUH J W, LEE W Y, et al. Risk factors and treatment strategies for local recurrence of locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy followed by total mesorectal excision[J/OL]. Eur J Surg Oncol, 2024, 50(11): 108641 [2024-11-10]. https://www.ncbi.nlm.nih.gov/pubmed/39213693/. DOI: 10.1016/j.ejso.2024.108641.
[4]
ZENG D X, YANG Z, TAN L, et al. Risk factors for lateral pelvic lymph node metastasis in patients with lower rectal cancer: a systematic review and meta-analysis[J/OL]. Front Oncol, 2023, 13: 1219608 [2024-11-10]. https://www.ncbi.nlm.nih.gov/pubmed/37746256/. DOI: 10.3389/fonc.2023.1219608.
[5]
GAO Z, CAO H, XU X, et al. Prognostic value of lymphovascular invasion in stage Ⅱ colorectal cancer patients with an inadequate examination of lymph nodes[J/OL]. World J Surg Oncol, 2021, 19(1): 125 [2024-11-10]. https://www.ncbi.nlm.nih.gov/pubmed/33866973/. DOI: 10.1186/s12957-021-02224-3.
[6]
LUCHINI C, BIBEAU F, LIGTENBERG M L, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach[J]. Ann Oncol, 2019, 30(8): 1232-1243. DOI: 10.1093/annonc/mdz116.
[7]
LIEBIG C, AYALA G, WILKS J A, et al. Perineural invasion in cancer: a review of the literature[J]. Cancer, 2009, 115(15): 3379-3391. DOI: 10.1002/cncr.24396.
[8]
National Health Commission of the People′s Republic of China. Chinese protocol of diagnosis and treatment of colorectal cancer(2023 edition)[J]. Chin J Dig Surg, 2023, 22(6): 667-698. DOI: 10.3760/cma.j.cn115610-20230526-00236.
[9]
LI J, MEI S W, ZHOU S C, et al. Perineural invasion is a prognostic factor in stage Ⅱ colorectal cancer but not a treatment indicator for traditional chemotherapy: a retrospective cohort study[J]. J Gastrointest Oncol, 2022, 13(2): 710-721. DOI: 10.21037/jgo-22-277.
[10]
YANG Y S, DING Y S, ZHANG Y F, et al. High resolution T2WI image-based radiomics nomogram for prediction of perineural invasion in rectal cancer[J]. Oncoradiology, 2022, 31(2): 130-138. DOI: 10.19732/j.cnki.2096-6210.2022.02.005.
[11]
CHEN S L, LI N, TANG Y, et al. The prognostic value of MRI-detected extramural vascular invasion (mrEMVI) for rectal cancer patients treated with neoadjuvant therapy: a meta-analysis[J]. Eur Radiol, 2021, 31(12): 8827-8837. DOI: 10.1007/s00330-021-07981-z.
[12]
LV Q T, CHEN Y, LI S M, et al. Correlation research of the ADC value of MR diffusion weighted imaging in differential differentiation of rectal tumor, perineural invasion and peritumor-intravascular cancer emboli[J]. Chin J Magn Reson Imag, 2016, 7(12): 915-920. DOI: 10.12015/issn.1674-8034.2016.12.005.
[13]
LIU J K, LI Q Y, TANG L L, et al. Correlations of mean and mimimum apparent diffusion coefficient values with the clinicopathological features in rectal cancer[J]. Acad Radiol, 2021, 28(Suppl 1): S105-S111. DOI: 10.1016/j.acra.2020.10.018.
[14]
MD N M, SHINYA FUJII MD P, CHIE INOUE MD P, et al. Apparent diffusion coefficient (ADC) measurement in ovarian tumor: Effect of region-of-interest methods on ADC values and diagnostic ability[J]. J Magn Reson Imag, 2016, 43(3): 720-725. DOI: 10.1002/jmri.25011.
[15]
HE R, SONG G S, FU J Y, et al. Histogram analysis based on intravoxel incoherent motion diffusion-weighted imaging for determining the perineural invasion status of rectal cancer[J]. Quant Imaging Med Surg, 2024, 14(8): 5358-5372. DOI: 10.21037/qims-23-1614.
[16]
WAN L J, PENG W J, ZOU S M, et al. Predicting perineural invasion using histogram analysis of zoomed EPI diffusion-weighted imaging in rectal cancer[J]. Abdom Radiol, 2022, 47(10): 3353-3363. DOI: 10.1007/s00261-022-03579-1.
[17]
YU X J, CHEN Y S, WANG C Y, et al. MRI performance and ADC histogram predicts lymphatic invasion in invasive ductal breast carcinoma[J]. J Clin Radiol, 2020, 39(2): 294-298. DOI: 10.13437/j.cnki.jcr.2020.02.016.
[18]
CUI Y F, YANG X T, DU X S, et al. Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors[J]. Eur Radiol, 2018, 28(4): 1485-1494. DOI: 10.1007/s00330-017-5094-3.
[19]
DONG L J, ZHANG L, GAO X Y, et al. Clinical application of whole-volume apparent diffusion coefficient histogram parameters of histological grading rectal adenocarcinoma[J]. Chin J Magn Reson Imag, 2022, 13(7): 48-54. DOI: 10.12015/issn.1674-8034.2022.07.009.
[20]
FENG F W, LIU Y Q, HU S, et al. The value of whole-volume ADC histogram analysis combined with ADC value in preoperatively prediction of tumor deposits in rectal cancer[J]. Chin J Magn Reson Imag, 2024, 15(4): 88-92. DOI: 10.12015/issn.1674-8034.2024.04.014
[21]
ENKHBAATAR N E, INOUE S, YAMAMURO H, et al. MR imaging with apparent diffusion coefficient histogram analysis: evaluation of locally advanced rectal cancer after chemotherapy and radiation therapy[J]. Radiology, 2018, 288(1): 129-137. DOI: 10.1148/radiol.2018171804.
[22]
Organized by the Guidelines Working Committee of the Chinese Society of Clinical Oncology. Guidelines of Chinese society of clinical oncology (CSCO) colorectal cancer[M]. Beijing: People's Medical Publishing House, 2024: 14-27.
[23]
WEISER M R. AJCC 8th edition: colorectal cancer[J]. Ann Surg Oncol, 2018, 25(6): 1454-1455. DOI: 10.1245/s10434-018-6462-1.
[24]
XUE C Q, ZHOU Q, ZHANG P, et al. MRI histogram analysis of tumor-infiltrating CD8+ T cell levels in patients with glioblastoma[J/OL]. Neuroimage Clin, 2023, 37: 103353 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/36812768/. DOI: 10.1016/j.nicl.2023.103353.
[25]
ZHANG Y M, TAN H Q, HUANG B, et al. Application of a combined clinical prediction model based on enhanced T1-weighted image(T1WI) full volume histogram in peripheral nerve invasion (PNI) and lymphatic vessel invasion (LVI) in rectal cancer[J]. Abdom Radiol, 2025, 50(3): 1069-1078. DOI: 10.1007/s00261-024-04556-6.
[26]
XU H H, LIU B C, DING X H, et al. Added value of apparent diffusion coefficient histogram in predicting extraprostatic extension of prostate cancer[J]. Chin J Med Imag, 2024, 32(9): 938-944. DOI: 10.3969/j.issn.1005-5185.2024.09.014.
[27]
YUAN Y, CHEN X L, LI Z L, et al. The application of apparent diffusion coefficients derived from intratumoral and peritumoral zones for assessing pathologic prognostic factors in rectal cancer[J]. Eur Radiol, 2022, 32(8): 5106-5118. DOI: 10.1007/s00330-022-08717-3.
[28]
ZENG Q, HONG Y L, CHENG J, et al. Quantitative study of preoperative staging of gastric cancer using intravoxel incoherent motion diffusion-weighted imaging as a potential clinical index[J/OL]. Eur J Radiol, 2021, 141: 109627 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/34126429/. DOI: 10.1016/j.ejrad.2021.109627.
[29]
CHAUDHURI O, COOPER-WHITE J, JANMEY P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584(7822): 535-546. DOI: 10.1038/s41586-020-2612-2.
[30]
QI W Y, CHENG Y, YANG S G. Value of diffusion-weighted imaging in evaluating lymphovascular space invasion of endometrial cancer[J]. Radiol Pract, 2021, 36(2): 222-226. DOI: 10.13609/j.cnki.1000-0313.2021.02.014.
[31]
DURANDO M, GENNARO L, CHO G Y, et al. Quantitative apparent diffusion coefficient measurement obtained by 3.0Tesla MRI as a potential noninvasive marker of tumor aggressiveness in breast cancer[J]. Eur J Radiol, 2016, 85(9): 1651-1658. DOI: 10.1016/j.ejrad.2016.06.019.
[32]
LI J, WANG Y, ZHANG H K, et al. The value of intravoxel incoherent motion diffusion-weighted imaging in predicting perineural invasion for resectable gastric cancer: a prospective study[J/OL]. Clin Radiol, 2024, 79(1): e65-e72 [2024-11-10]. https://www.ncbi.nlm.nih.gov/pubmed/37833144/. DOI: 10.1016/j.crad.2023.09.014.
[33]
ABDELAZIZ T T, ABDEL KHALEK ABDEL RAZEK A. Magnetic resonance imaging of perineural spread of head and neck cancer[J]. Magn Reson Imaging Clin N Am, 2022, 30(1): 95-108. DOI: 10.1016/j.mric.2021.06.017.
[34]
LIU H L, ZONG M, WEI H, et al. Added value of histogram analysis of apparent diffusion coefficient maps for differentiating triple-negative breast cancer from other subtypes of breast cancer on standard MRI[J]. Cancer Manag Res, 2019, 11: 8239-8247. DOI: 10.2147/CMAR.S210583.
[35]
ESTRELLA V, CHEN T A, LLOYD M, et al. Acidity generated by the tumor microenvironment drives local invasion[J]. Cancer Res, 2013, 73(5): 1524-1535. DOI: 10.1158/0008-5472.CAN-12-2796.
[36]
CHENG J M, LUO W X, TAN B G, et al. Whole-tumor histogram analysis of apparent diffusion coefficients for predicting lymphovascular space invasion in stage IB-IIA cervical cancer[J/OL]. Front Oncol, 2023, 13: 1206659 [2024-11-10]. https://www.ncbi.nlm.nih.gov/pubmed/37404753/. DOI: 10.3389/fonc.2023.1206659.
[37]
CURVO-SEMEDO L, LAMBREGTS D M J, MAAS M, et al. Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness[J]. J Magn Reson Imaging, 2012, 35(6): 1365-1371. DOI: 10.1002/jmri.23589.
[38]
HEO S H, SHIN S S, KIM J W, et al. Pre-treatment diffusion-weighted MR imaging for predicting tumor recurrence in uterine cervical cancer treated with concurrent chemoradiation: value of histogram analysis of apparent diffusion coefficients[J]. Korean J Radiol, 2013, 14(4): 616-625. DOI: 10.3348/kjr.2013.14.4.616.
[39]
FOURNIER F R, ALI K MOTAMEDI M, BROWN C J, et al. Oncologic outcomes associated with MRI-detected extramural venous invasion (mrEMVI) in rectal cancer: a systematic review and meta-analysis[J]. Ann Surg, 2022, 275(2): 303-314. DOI: 10.1097/SLA.0000000000004636.
[40]
HUANG W K, QING Y, LIU X, et al. Exploring the value of extramural vascular invasion score of MRI and apparent diffusion coefficient in diagnosing EMVI of rectal adenocarcinoma[J]. J Clin Radiol, 2023, 42(7): 1149-1153. DOI: 10.13437/j.cnki.jcr.2023.07.018.
[41]
JHAVERI K S, HOSSEINI-NIK H, THIPPHAVONG S, et al. MRI detection of extramural venous invasion in rectal cancer: correlation with histopathology using elastin stain[J]. AJR Am J Roentgenol, 2016, 206(4): 747-755. DOI: 10.2214/AJR.15.15568.
[42]
BAE J S, KIM S H, HUR B Y, et al. Prognostic value of MRI in assessing extramural venous invasion in rectal cancer: multi-readers' diagnostic performance[J]. Eur Radiol, 2019, 29(8): 4379-4388. DOI: 10.1007/s00330-018-5926-9.
[43]
XU L S, XU X, YANG J F, et al. Correlation and predictive value of serum AREG levels and CT quantitative parameters with vascular invasion and lymph node metastasis in rectal cancer[J]. Radiol Pract, 2024, 39(5): 652-657. DOI: 10.13609/j.cnki.1000-0313.2024.05.015.

PREV Predicting vessels encapsulating tumor clusters in hepatocellular carcinoma using combination clinical biomarkers and MR features nomogram
NEXT Prediction of lymphovascular space invasion in endometrial carcinoma based on preoperative multiparameter MRI deep transfer learning features
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn