Share:
Share this content in WeChat
X
Review
Research progress in magnetic resonance imaging of generalized anxiety disorder
LIU Bingqian  LIN Bingjie  WANG Meiyun 

Cite this article as: LIU B Q, LIN B J, WANG M Y. Research progress in magnetic resonance imaging of generalized anxiety disorder[J]. Chin J Magn Reson Imaging, 2025, 16(3): 98-103. DOI:10.12015/issn.1674-8034.2025.03.016.


[Abstract] Generalized anxiety disorder (GAD), as one of the most common neuropsychiatric disorders, exacerbates the burden on some families and society. Exploring the pathogenesis of GAD and finding more precise and effective treatment methods has always been the common goal of researchers in this field. The mechanism of GAD is very complex, involving genetics, environment, neurobiology, and neurochemistry. MRI technology, with its ability to reveal brain structure and function at multiple levels, is gradually becoming an important tool for studying the neuro-mechanisms of generalized anxiety disorder. This technology not only provides information on brain structure, functional connectivity, white matter pathways, and metabolism but also helps us to deeply understand the pathological processes of generalized anxiety disorder, thereby providing a strong theoretical basis for clinical treatment. This article reviews the application value and the latest research progress of several MRI technology in generalized anxiety disorder, aiming to further reveal the neuro-mechanisms of generalized anxiety disorder and promote related clinical research, providing references and assistance.
[Keywords] generalized anxiety disorder;magnetic resonance imaging;medical imaging;neurobiology;research progress

LIU Bingqian1, 2   LIN Bingjie2, 3   WANG Meiyun2, 4*  

1 Department of Medical Imaging, Henan University People's Hospital, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

3 Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou 450003, China

4 Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou 450046, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2025-01-06
Accepted  2025-02-17
DOI: 10.12015/issn.1674-8034.2025.03.016
Cite this article as: LIU B Q, LIN B J, WANG M Y. Research progress in magnetic resonance imaging of generalized anxiety disorder[J]. Chin J Magn Reson Imaging, 2025, 16(3): 98-103. DOI:10.12015/issn.1674-8034.2025.03.016.

[1]
LIU W, ZHOU B, LI G, et al. Enhanced diagnostics for generalized anxiety disorder: leveraging differential channel and functional connectivity features based on frontal EEG signals[J/OL]. Sci Rep, 2024, 14(1): 22789 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39354007/. DOI: 10.1038/s41598-024-73615-1.
[2]
BENDALL R C A, ELTON S N, HUGHES A T L. Expressive suppression mediates the relationship between sleep quality and generalized anxiety symptomology[J/OL]. Sci Rep, 2024, 14(1): 13575 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/38866858/. DOI: 10.1038/s41598-024-63939-3.
[3]
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI: 10.1016/s2215-0366(18)30511-x.
[4]
CUI F, ZHAO L, LU M, et al. Functional and structural brain reorganization in patients with ischemic stroke: a multimodality MRI fusion study[J]. Cereb Cortex, 2023, 33(19): 10453-10462. DOI: 10.1093/cercor/bhad295.
[5]
HAAS S, BRAVO F. Functional PET/MRI reveals active inhibition of neuronal activity during optogenetic activation of the nigrostriatal pathway[J/OL]. Sci Adv, 2024, 10(43): eadn2776 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39454014/. DOI: 10.1126/sciadv.adn2776.
[6]
KOTOULA V, EVANS J W, PUNTURIERI C E, et al. Review: The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression[J/OL]. Front Neuroimaging, 2023, 2: 1110258 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/37554642/. DOI: 10.3389/fnimg.2023.1110258.
[7]
LESKINEN S, SINGHA S, MEHTA N H, et al. Applications of Functional Magnetic Resonance Imaging to the Study of Functional Connectivity and Activation in Neurological Disease: A Scoping Review of the Literature[J]. World Neurosurg, 2024, 189: 185-192. DOI: 10.1016/j.wneu.2024.06.003.
[8]
KUMAR V A, LEE J. Recommended Resting-State fMRI Acquisition and Preprocessing Steps for Preoperative Mapping of Language and Motor and Visual Areas in Adult and Pediatric Patients with Brain Tumors and Epilepsy[J]. AJNR Am J Neuroradiol, 2024, 45(2): 139-148. DOI: 10.3174/ajnr.A8067.
[9]
LAKHANI D A, SABSEVITZ D S, CHAICHANA K L. Current State of Functional MRI in the Presurgical Planning of Brain Tumors[J/OL]. Radiol Imaging Cancer, 2023, 5(6): e230078 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/37861422/. DOI: 10.1148/rycan.230078.
[10]
ZHANG H, BAI X, DIAZ M T. The intensity and connectivity of spontaneous brain activity in a language network relate to aging and language[J/OL]. Neuropsychologia, 2021, 154: 107784 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/33571489/. DOI: 10.1016/j.neuropsychologia.2021.107784.
[11]
ZHANG F, HUA B, WANG M, et al. Regional homogeneity abnormalities of resting state brain activities in children with growth hormone deficiency[J/OL]. Sci Rep, 2021, 11(1): 334 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/33432029/. DOI: 10.1038/s41598-020-79475-9.
[12]
CUI Q, SHENG W, CHEN Y, et al. Dynamic changes of amplitude of low-frequency fluctuations in patients with generalized anxiety disorder[J]. Hum Brain Mapp, 2020, 41(6): 1667-1676. DOI: 10.1002/hbm.24902.
[13]
SKYBERG A M, NEWMAN B T. An epigenetic mechanism for differential maturation of amygdala-prefrontal connectivity in childhood socio-emotional development[J/OL]. Transl Psychiatry, 2023, 13(1): 91 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/36914631/. DOI: 10.1038/s41398-023-02380-y.
[14]
FRIEDMAN N P, ROBBINS T W. The role of prefrontal cortex in cognitive control and executive function[J]. Neuropsychopharmacology, 2022, 47(1): 72-89. DOI: 10.1038/s41386-021-01132-0.
[15]
XIA L, LI S, WANG T, et al. Spontaneous alterations of regional brain activity in patients with adult generalized anxiety disorder[J]. Neuropsychiatr Dis Treat, 2017, 13: 1957-1965. DOI: 10.2147/ndt.s133853.
[16]
LI R, SHEN F, SUN X, et al. Dissociable salience and default mode network modulation in generalized anxiety disorder: a connectome-wide association study[J]. Cereb Cortex, 2023, 33(10): 6354-6365. DOI: 10.1093/cercor/bhac509.
[17]
YESHURUN Y, NGUYEN M, HASSON U. The default mode network: where the idiosyncratic self meets the shared social world[J]. Nat Rev Neurosci, 2021, 22(3): 181-192. DOI: 10.1038/s41583-020-00420-w.
[18]
HE W, XIONG H, FANG J, et al. Impact of self-designed Ningxin Anshen Decoction on the resting-state network functional connectivity in patients with mild to moderate generalized anxiety disorders[J]. Ann Palliat Med, 2021, 10(2): 1313-1324. DOI: 10.21037/apm-20-300.
[19]
FERNANDINO L, BINDER J R. How does the "default mode" network contribute to semantic cognition?[J/OL]. Brain Lang, 2024, 252: 105405 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/38579461/. DOI: 10.1016/j.bandl.2024.105405.
[20]
HAN F, LIU X, MAILMAN R B. Resting-state global brain activity affects early β-amyloid accumulation in default mode network[J/OL]. Nat Commun, 2023, 14(1): 7788 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/38012153/. DOI: 10.1038/s41467-023-43627-y.
[21]
STEINHÄUSER J L, TEED A R, AL-ZOUBI O, et al. Reduced vmPFC-insula functional connectivity in generalized anxiety disorder: a Bayesian confirmation study[J/OL]. Sci Rep, 2023, 13(1): 9626 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/37316518/. DOI: 10.1038/s41598-023-35939-2.
[22]
ZHANG Y, DUAN M, HE H. Deficient salience and default mode functional integration in high worry-proneness subject: a connectome-wide association study[J]. Brain Imaging Behav, 2024, 18(6): 1560-1568. DOI: 10.1007/s11682-024-00951-1.
[23]
LI Y S, WANG C, ZHANG N. Research progress on similarity and heterogeneity of brain network dysfunction in different subtypes of anxiety disorders[J]. Journal of Guangxi Medical University, 2023, 40(10): 1603-1607. DOI: 10.16190/j.cnki.45-1211/r.2023.10.001.
[24]
ZHAO H, TUREL O, BECHARA A, et al. How distinct functional insular subdivisions mediate interacting neurocognitive systems[J]. Cereb Cortex, 2023, 33(5): 1739-1751. DOI: 10.1093/cercor/bhac169.
[25]
BERNTSON G G, KHALSA S S. Neural Circuits of Interoception[J]. Trends Neurosci, 2021, 44(1): 17-28. DOI: 10.1016/j.tins.2020.09.011.
[26]
YAO Z, LIAO M, HU T, et al. An Effective Method to Identify Adolescent Generalized Anxiety Disorder by Temporal Features of Dynamic Functional Connectivity[J/OL]. Front Hum Neurosci, 2017, 11: 492 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/29081741/. DOI: 10.3389/fnhum.2017.00492.
[27]
FRONTERA J L, SALA R W, GEORGESCU I A, et al. The cerebellum regulates fear extinction through thalamo-prefrontal cortex interactions in male mice[J/OL]. Nat Commun, 2023, 14(1): 1508 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/36932068/. DOI: 10.1038/s41467-023-36943-w.
[28]
HWANG K D, KIM S J, LEE Y S. Cerebellar Circuits for Classical Fear Conditioning[J/OL]. Front Cell Neurosci, 2022, 16: 836948 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/35431810/. DOI: 10.3389/fncel.2022.836948.
[29]
LI W, CUI H, ZHU Z, et al. Aberrant Functional Connectivity between the Amygdala and the Temporal Pole in Drug-Free Generalized Anxiety Disorder[J/OL]. Front Hum Neurosci, 2016, 10: 549 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/27867352/. DOI: 10.3389/fnhum.2016.00549.
[30]
WANG W, PENG Z, WANG X, et al. Disrupted interhemispheric resting-state functional connectivity and structural connectivity in first-episode, treatment-naïve generalized anxiety disorder[J]. J Affect Disord, 2019, 251: 280-286. DOI: 10.1016/j.jad.2019.03.082.
[31]
RANZENBERGER L R, DAS J M, SNYDER T. Diffusion Tensor Imaging[M]. Treasure Island: StatPearls Publishing, 2024.
[32]
WADE R G, LU F. Meta-analysis of the normal diffusion tensor imaging values of the peripheral nerves in the upper limb[J/OL]. Sci Rep, 2023, 13(1): 4852 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/36964186/. DOI: 10.1038/s41598-023-31307-2.
[33]
ZHAO Y, YANG L, GONG G, et al. Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 113: 110477 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/34798202/. DOI: 10.1016/j.pnpbp.2021.110477.
[34]
QIN J, WANG X, FAN G, et al. Identifying amyotrophic lateral sclerosis using diffusion tensor imaging, and correlation with neurofilament markers[J/OL]. Sci Rep, 2024, 14(1): 28110 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39548226/. DOI: 10.1038/s41598-024-79511-y.
[35]
FREIRE I S, LOPES T S. From images to insights: a neuroradiologist's practical guide on white matter fiber tract anatomy and DTI patterns for pre-surgical planning[J]. Neuroradiology, 2024, 66(8): 1251-1265. DOI: 10.1007/s00234-024-03362-7.
[36]
LIAO M, YANG F, ZHANG Y, et al. White matter abnormalities in adolescents with generalized anxiety disorder: a diffusion tensor imaging study[J/OL]. BMC psychiatry, 2014, 14: 41 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/24528558/. DOI: 10.1186/1471-244x-14-41.
[37]
LIAKOS F, KOMAITIS S, DROSOS E, et al. The Topography of the Frontal Terminations of the Uncinate Fasciculus Revisited Through Focused Fiber Dissections: Shedding Light on a Current Controversy and Introducing the Insular Apex as a Key Anatomoclinical Area[J/OL]. World neurosurg, 2021, 152: e625-e634 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/34144169/. DOI: 10.1016/j.wneu.2021.06.012.
[38]
WEISS A, DI CARLO D T, DI RUSSO P, et al. Microsurgical anatomy of the amygdaloid body and its connections[J]. Brain Struct Funct, 2021, 226(3): 861-874. DOI: 10.1007/s00429-020-02214-3.
[39]
ZHOU Y, LUO Y, ZHANG N, et al. Ten years of researches on generalized anxiety disorder (GAD): a scientometric review[J]. Curr Psychol, 2024, 43(24): 21393-21408. DOI: 10.1007/s12144-024-05872-2.
[40]
GKINTONI E, ORTIZ P S. Neuropsychology of Generalized Anxiety Disorder in Clinical Setting: A Systematic Evaluation[J/OL]. Healthcare (Basel), 2023, 11(17): 2446 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/37685479/. DOI: 10.3390/healthcare11172446.
[41]
GONZALEZ ALAM T R J, CRUZ ARIAS J, JEFFERIES E, et al. Ventral and dorsal aspects of the inferior frontal-occipital fasciculus support verbal semantic access and visually-guided behavioural control[J]. Brain Struct Funct, 2024, 229(1): 207-221. DOI: 10.1007/s00429-023-02729-5.
[42]
MATYI M A, SPIELBERG J M. Negative emotion differentiation and white matter microstructure[J]. J Affect Disord, 2023, 332: 238-246. DOI: 10.1016/j.jad.2023.04.010.
[43]
TENG S Y, SUI R B, ZHANG F, et al. Changes of White Matter Fiber Tracts in Elderly Patients with Generalized Anxiety Disorder[J]. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2022, 24(11): 1169-1172. DOI: 10.3969/j.issn.1009-0126.2022.11.013.
[44]
HAN A, DHOLLANDER T, SUN Y L, et al. Fiber-specific age-related differences in the white matter of healthy adults uncovered by fixel-based analysis[J]. Neurobiol Aging, 2023, 130: 22-29. DOI: 10.1016/j.neurobiolaging.2023.06.007.
[45]
DE LA CRUZ F, SCHUMANN A, RIEGER K, et al. White matter differences between younger and older adults revealed by fixel-based analysis[J/OL]. Aging brain, 2024, 6: 100132 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39650611/. DOI: 10.1016/j.nbas.2024.100132.
[46]
LI X, ABIKO K, SHERIFF S, et al. The Distribution of Major Brain Metabolites in Normal Adults: Short Echo Time Whole-Brain MR Spectroscopic Imaging Findings[J/OL]. Metabolites, 2022, 12(6): 543 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/35736476/. DOI: 10.3390/metabo12060543.
[47]
MOHAMMADI H, CHANGIZI V, RIYAHI ALAM N, et al. Measurement of Post-Treatment Changes in Brain Metabolites in Patients with Generalized Anxiety Disorder using Magnetic Resonance Spectroscopy[J]. J Biomed Phys Eng, 2022, 12(1): 51-60. DOI: 10.31661/jbpe.v0i0.1224.
[48]
KIYAR M, KUBRE M A, COLLET S, et al. Minority Stress and the Effects on Emotion Processing in Transgender Men and Cisgender People: A Study Combining fMRI and 1H-MRS[J]. Int J Neuropsychopharmacol, 2022, 25(5): 350-360. DOI: 10.1093/ijnp/pyab090.
[49]
XUE J, CHEN H, WANG Y. Structural mechanisms of human sodium-coupled high-affinity choline transporter CHT1[J/OL]. Cell Discov, 2024, 10(1): 116 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39587078/. DOI: 10.1038/s41421-024-00731-7.
[50]
WU J L, LI Z M. Distinct septo-hippocampal cholinergic projections separately mediate stress-induced emotional and cognitive deficits[J/OL]. Sci Adv, 2024, 10(45): eado1508 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39514666/. DOI: 10.1126/sciadv.ado1508.
[51]
ZACHAROPOULOS G, SELLA F, COHEN KADOSH K, et al. The effect of parietal glutamate/GABA balance on test anxiety levels in early childhood in a cross-sectional and longitudinal study[J]. Cereb Cortex, 2022, 32(15): 3243-3253. DOI: 10.1093/cercor/bhab412.
[52]
CHEN T, LIU W B, ZHU S J. Differential modulation of pain and associated anxiety by GABAergic neuronal circuits in the lateral habenula[J/OL]. Proc Natl Acad Sci USA, 2024, 121(48): e2409443121 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39565313/. DOI: 10.1073/pnas.2409443121.
[53]
ARORA I, MAL P, ARORA P, et al. GABAergic implications in anxiety and related disorders[J/OL]. Biochem Biophys Res Commun, 2024, 724: 150218 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/38865810/. DOI: 10.1016/j.bbrc.2024.150218.
[54]
STRAWN J R, CHU W J, WHITSEL R M, et al. A pilot study of anterior cingulate cortex neurochemistry in adolescents with generalized anxiety disorder[J]. Neuropsychobiology, 2013, 67(4): 224-229. DOI: 10.1159/000347090.
[55]
MATHEW S J, MAO X, COPLAN J D, et al. Dorsolateral prefrontal cortical pathology in generalized anxiety disorder: a proton magnetic resonance spectroscopic imaging study[J]. Am J Psychiatry, 2004, 161(6): 1119-1121. DOI: 10.1176/appi.ajp.161.6.1119.
[56]
LUO X F, LIU S W, LI H N, et al. Effects of Abdominal Massage on the Structure and Function of Affective Loop in Rats with Generalized Anxiety Disorder[J]. International Journal of Biomedical Engineering, 2020, 43(1): 11-17. DOI: 10.3760/cma.j.issn.1673-4181.2020.01.002.
[57]
SEBENIUS I, DORFSCHMIDT L. Structural MRI of brain similarity networks[J]. Nat Rev Neurosci, 2025, 26(1): 42-59. DOI: 10.1038/s41583-024-00882-2.
[58]
ŚWIĄDER K, FLOROWSKA A. The Sensory Quality and the Physical Properties of Functional Green Tea-Infused Yoghurt with Inulin[J/OL]. Foods, 2022, 11(4): 566 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/35206044/. DOI: 10.3390/foods11040566.
[59]
MOLENT C, MAGGIONI E, CECCHETTO F, et al. Reduced cortical thickness and increased gyrification in generalized anxiety disorder: a 3 T MRI study[J]. Psychol Med, 2018, 48(12): 2001-2010. DOI: 10.1017/s003329171700352x.
[60]
NIXON N L, LIDDLE P F, NIXON E, et al. Biological vulnerability to depression: linked structural and functional brain network findings[J]. Br J Psychiatry, 2014, 204: 283-289. DOI: 10.1192/bjp.bp.113.129965.
[61]
BASHFORD-LARGO J, ZHANG R, MATHUR A, et al. Reduced cortical volume of the default mode network in adolescents with generalized anxiety disorder[J]. Depress Anxiety, 2022, 39(6): 485-495. DOI: 10.1002/da.23252.
[62]
WANG J, YANG Z, KLUGAH-BROWN B, et al. The critical mediating roles of the middle temporal gyrus and ventrolateral prefrontal cortex in the dynamic processing of interpersonal emotion regulation[J/OL]. NeuroImage, 2024, 300: 120789 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39159702/. DOI: 10.1016/j.neuroimage.2024.120789.
[63]
LI K, KOUKOUTSELOS K. Distinct ventral hippocampal inhibitory microcircuits regulating anxiety and fear behaviors[J/OL]. Nat Commun, 2024, 15(1): 8228 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39300067/. DOI: 10.1038/s41467-024-52466-4.
[64]
HARREWIJN A, CARDINALE E M, GROENEWOLD N A, et al. Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group[J/OL]. Transl Psychiatry, 2021, 11(1): 502 [2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/34599145/. DOI: 10.1038/s41398-021-01622-1.

PREV Atypical teratoma in the spinal canal: One case report
NEXT Advances in magnetic resonance imaging of the habenula in depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn