Share:
Share this content in WeChat
X
Review
Advances in magnetic resonance imaging of the habenula in depression
HOU Lin  BIAN Bingyang  ZHANG Huimao  ZHANG Lei 

Cite this article as: HOU L, BIAN B Y, ZHANG H M, et al. Advances in magnetic resonance imaging of the habenula in depression[J]. Chin J Magn Reson Imaging, 2025, 16(3): 104-108, 137. DOI:10.12015/issn.1674-8034.2025.03.017.


[Abstract] The habenula (Hb) is a pair of small grey nuclei located in the deep part of the brain, which plays a key role in emotion regulation as an important hub connecting the limbic forebrain and the midbrain, and overexcitability of this nucleus has been proved to be closely related to the onset of depression. The continuous development of MRI technology and its deep integration with artificial intelligence have not only deepened people's understanding of the involvement of the Hb in the pathogenesis of depression, but also helped to improve the diagnosis, treatment and prognosis of depression. In this paper, we provide a concise overview of the MRI, segmentation and imaging changes of the Hb in depression, discuss the challenges of current research, and provide new ideas for early diagnosis and personalized treatment strategies for depression.
[Keywords] habenula;depression;magnetic resonance imaging;image processing;deep learning

HOU Lin   BIAN Bingyang   ZHANG Huimao   ZHANG Lei*  

Department of Radiology, the First Hospital of Jilin University, Changchun 130021, China

Corresponding author: ZHANG L, E-mail: zlei99@jlu.edu.cn

Conflicts of interest   None.

Received  2024-11-30
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.017
Cite this article as: HOU L, BIAN B Y, ZHANG H M, et al. Advances in magnetic resonance imaging of the habenula in depression[J]. Chin J Magn Reson Imaging, 2025, 16(3): 104-108, 137. DOI:10.12015/issn.1674-8034.2025.03.017.

[1]
CUI L, LI S, WANG S, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment[J/OL]. Signal Transduction and Targeted Therapy, 2024, 9: 30 [2024-11-11]. https://www.nature.com/articles/s41392-024-01738-y. DOI: 10.1038/s41392-024-01738-y.
[2]
GBD 2021 Diseases And Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet (London, England), 2024, 403(10440): 2133-2161. DOI: 10.1016/S0140-6736(24)00757-8.
[3]
2021 FORECASTING COLLABORATORS GBD. Burden of disease scenarios for 204 countries and territories, 2022-2050: a forecasting analysis for the Global Burden of Disease Study 2021[J]. Lancet (London, England), 2024, 403(10440): 2204-2256. DOI: 10.1016/S0140-6736(24)00685-8.
[4]
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI: 10.1016/S2215-0366(18)30511-X.
[5]
PEREZ-CABALLERO L, TORRES-SANCHEZ S, ROMERO-LÓPEZ-ALBERCA C, et al. Monoaminergic system and depression[J]. Cell and Tissue Research, 2019, 377(1): 107-113. DOI: 10.1007/s00441-018-2978-8.
[6]
ROMAN E, WEININGER J, LIM B, et al. Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus[J]. Brain Struct Funct, 2020, 225(5): 1437-1458. DOI: 10.1007/s00429-020-02069-8.
[7]
ABLES J L, PARK K, IBAÑEZ-TALLON I, et al. Understanding the habenula: A major node in circuits regulating emotion and motivation[J/OL]. Pharmacol Res, 2023, 190: 106734 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S1043661823000907?via%3. DOI: 10.1016/j.phrs.2023.106734.
[8]
RANFT K, DOBROWOLNY H, KRELL D, et al. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia[J]. Psychol Med, 2010, 40(4): 557-567. DOI: 10.1017/S0033291709990821.
[9]
SARTORIUS A, KIENING K L, KIRSCH P, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient[J/OL]. Biol Psychiatry, 2010, 67(2): e9-e11 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S0006322309010476?via%3Dihub. DOI: 10.1016/j.biopsych.2009.08.027.
[10]
WANG Z, CAI X, QIU R, et al. Case Report: Lateral Habenula Deep Brain Stimulation for Treatment-Resistant Depression[J/OL]. Front Psychiatry, 2021, 11: 616501 [2024-11-11]. https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2020.616501/full. DOI: 10.3389/fpsyt.2020.616501.
[11]
ZHANG C, ZHANG Y, LUO H, et al. Bilateral Habenula deep brain stimulation for treatment-resistant depression: clinical findings and electrophysiological features[J/OL]. Transl Psychiatry, 2022, 12(1): 52 [2024-11-11]. https://www.nature.com/articles/s41398-022-01818-z. DOI: 10.1038/s41398-022-01818-z.
[12]
WANG Z, JIANG C, GUAN L, et al. Deep brain stimulation of habenula reduces depressive symptoms and modulates brain activities in treatment-resistant depression[J]. Nature Mental Health, 2024, 2: 1045-1052. DOI: 10.1038/s44220-024-00286-2.
[13]
CUI Y, HU S, HU H. Lateral Habenular Burst Firing as a Target of the Rapid Antidepressant Effects of Ketamine[J]. Trends in Neurosciences, 2019, 42(3): 179-191. DOI: 10.1016/j.tins.2018.12.002.
[14]
MA S, CHEN M, JIANG Y, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb[J]. Nature, 2023, 622(7984): 802-809. DOI: 10.1038/s41586-023-06624-1.
[15]
TROTIER A J, DILHARREGUY B, ANANDRA S, et al. The Compressed Sensing MP2RAGE as a Surrogate to the MPRAGE for Neuroimaging at 3 T[J]. Investigative Radiology, 2022, 57(6): 366-378. DOI: 10.1097/RLI.0000000000000849.
[16]
STROTMANN B, KÖGLER C, BAZIN P L, et al. Mapping of the internal structure of human habenula with ex vivo MRI at 7T[J/OL]. Front Hum Neurosci, 2013, 7: 878 [2024-11-11]. https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2013.00878/full.2013.00878/full. DOI: 10.3389/fnhum.2013.00878.
[17]
GLASSER M F, VAN ESSEN D C, et al. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI[J]. T J Neurosci, 2011, 31(32): 11597-11616. DOI: 10.1523/JNEUROSCI.2180-11.2011.
[18]
LAWSON R P, DREVETS W C, J Pet al ROISER. Defining the habenula in human neuroimaging studies[J]. NeuroImage, 2013, 64: 722-727. DOI: 10.1016/j.neuroimage.2012.08.076.
[19]
LIU W H, VALTON V, WANG L Z, et al. Association between habenula dysfunction and motivational symptoms in unmedicated major depressive disorder[J]. Soc Cogn Affect Neurosci, 2017, 12(9): 1520-1533. DOI: 10.1093/scan/nsx074.
[20]
SCHMIDT F M, SCHINDLER S, ADAMIDIS M, et al. Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI[J]. Eur Arch Psychiatry Clin Neurosci, 2017, 267(2): 107-115. DOI: 10.1007/s00406-016-0675-8.
[21]
KIM J W, NAIDICH T P, ELY B A, et al. Human habenula segmentation using myelin content[J]. NeuroImage, 2016, 130: 145-156. DOI: 10.1016/j.neuroimage.2016.01.048.
[22]
KIM J W, NAIDICH T P, JOSEPH J, et al. Reproducibility of myelin content-based human habenula segmentation at 3 Tesla[J]. Hum Brain Mapp, 2018, 39(7): 3058-3071. DOI: 10.1002/hbm.24060.
[23]
GERMANN J, GOUVEIA F V, MARTINEZ R C R, et al. Fully Automated Habenula Segmentation Provides Robust and Reliable Volume Estimation Across Large Magnetic Resonance Imaging Datasets, Suggesting Intriguing Developmental Trajectories in Psychiatric Disease[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2020, 5(9): 923-929. DOI: 10.1016/j.bpsc.2020.01.004.
[24]
CHEN X, WANG X, ZHANG K, et al. Recent advances and clinical applications of deep learning in medical image analysis[J/OL]. Medical image analysis, 2022, 79: 102444 [2025-03-08]. https://doi.org/10.1016/j.media.2022.102444. DOI: 10.1016/j.media.2022.102444.
[25]
BELIVEAU V, NØRGAARD M, BIRKL C, et al. Automated segmentation of deep brain nuclei using convolutional neural networks and susceptibility weighted imaging[J]. Hum Brain Mapp, 2021, 42(15): 4809-4822. DOI: 10.1002/hbm.25604.
[26]
ZHAO W, WANG Y, ZHOU F, et al. Automated Segmentation of Midbrain Structures in High-Resolution Susceptibility Maps Based on Convolutional Neural Network and Transfer Learning[J/OL]. Front Neurosci, 2022, 16 [2024-11-11]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.801618/full. DOI: 10.3389/fnins.2022.801618.
[27]
CHAI C, QIAO P, ZHAO B, et al. Brain gray matter nuclei segmentation on quantitative susceptibility mapping using dual-branch convolutional neural network[J/OL]. Artif Intell Med, 2022, 125: 102255 [2024-11-11]. https://linkinghub.elsevier.com/retrieve/pii/S0933-3657(22)00020-3. DOI: 10.1016/j.artmed.2022.102255.
[28]
LIM S H, YOON J, KIM Y J, et al. Reproducibility of automated habenula segmentation via deep learning in major depressive disorder and normal controls with 7 Tesla MRI[J/OL]. Sci Rep, 2021, 11(1): 13445 [2024-11-11]. https://www.nature.com/articles/s41598-021-92952-z. DOI: 10.1038/s41598-021-92952-z.
[29]
KYURAGI Y, OISHI N, HATAKOSHI M, et al. Segmentation and Volume Estimation of the Habenula Using Deep Learning in Patients With Depression[J/OL]. Biol Psychiatry Glob Open Sci, 2024, 4(4): 100314 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S2667174324000272?via%3Dihub. DOI: 10.1016/j.bpsgos.2024.100314.
[30]
CARCELLER-SINDREU M, DE DIEGO-ADELIÑO J, SERRA-BLASCO M, et al. Volumetric MRI study of the habenula in first episode, recurrent and chronic major depression[J]. Eur Neuropsychopharmacol, 2015, 25(11): 2015-2021. DOI: 10.1016/j.euroneuro.2015.08.009.
[31]
LUAN S X, ZHANG L, WANG R, et al. A resting-state study of volumetric and functional connectivity of the habenular nucleus in treatment-resistant depression patients[J/OL]. Brain Behav, 2019, 9(4): e01229 [2024-11-11]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.1229. DOI: 10.1002/brb3.1229.
[32]
RAIMONDO L, OLIVEIRA Ĺ. A. F., HEIJJ, et al. Advances in resting state fMRI acquisitions for functional connectomics[J/OL]. NeuroImage, 2021, 243: 118503 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S105381192100776X?via%3Dihub. DOI: 10.1016/j.neuroimage.2021.118503.
[33]
WU Z, WANG C, MA Z, et al. Abnormal functional connectivity of habenula in untreated patients with first-episode major depressive disorder[J/OL]. Psychiatry Res, 2020, 285: 112837 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S0165178119320876?via%3Dihub. DOI: 10.1016/j.psychres.2020.112837.
[34]
BARREIROS A R, BREUKELAAR I, MAYUR P, et al. Abnormal habenula functional connectivity characterizes treatment-resistant depression[J/OL]. Neuroimage Clin, 2022, 34: 102990 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S2213158222000559?via%3Dihub. DOI: 10.1016/j.nicl.2022.102990.
[35]
GOSNELL S N, CURTIS K N, VELASQUEZ K, et al. Habenular connectivity may predict treatment response in depressed psychiatric inpatients[J]. J Affect Disord, 2019, 242: 211-219. DOI: 10.1016/j.jad.2018.08.026.
[36]
ZHU Z, WANG S, LEE T M C, et al. Habenula functional connectivity variability increases with disease severity in individuals with major depression[J]. J Affect Disord, 2023, 333: 216-224. DOI: 10.1016/j.jad.2023.04.082.
[37]
QIAO D, ZHANG A, SUN N, et al. Altered Static and Dynamic Functional Connectivity of Habenula Associated with Suicidal Ideation in First-Episode, Drug-Naïve Patients With Major Depressive Disorder[J/OL]. Front Psychiatry, 2020, 11: 608197 [2024-11-11]. https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2020.608197/full. DOI: 10.3389/fpsyt.2020.608197.
[38]
TARAKU B, Loureiro J R, Sahib A K, et al. Modulation of habenular and nucleus accumbens functional connectivity by ketamine in major depression[J/OL]. Brain Behav, 2024, 14(6): e3511 [2025-03-08]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11187958/. DOI: 10.1002/brb3.3511
[39]
ZHANG G M, WU H Y, CUI W Q, et al. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence[J/OL]. Front Psychiatry, 2022, 13: 1043846 [2024-11-11]. https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2022.1043846/full. DOI: 10.3389/fpsyt.2022.1043846.
[40]
STROTMANN B, HEIDEMANN R M, ANWANDER A, et al. High-resolution MRI and diffusion-weighted imaging of the human habenula at 7 tesla[J]. J Magn Reson Imaging, 2014, 39(4): 1018-1026. DOI: 10.1002/jmri.24252.
[41]
VAISH A, RAJWADE A, GUPTA A. TL-HARDI: Transform learning based accelerated reconstruction of HARDI data[J/OL]. Computers in Biology and Medicine, 2022, 143: 105212 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S001048252200004X?via%3Dihub. DOI: 10.1016/j.compbiomed.2022.105212.
[42]
BARINGER S L, SIMPSON I A, CONNOR J R. Brain iron acquisition: An overview of homeostatic regulation and disease dysregulation[J]. Journal of Neurochemistry, 2023, 165(5): 625-642. DOI: 10.1111/jnc.15819.
[43]
MAHONEY-SÁNCHEZ L, BOUCHAOUI H, AYTON S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease[J/OL]. Prog Neurobiol, 2021, 196: 101890 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S0301008220301453?via%3Dihub. DOI: 10.1016/j.pneurobio.2020.101890.
[44]
WANG Q, SUN J, CHEN T, et al. Ferroptosis, Pyroptosis, and Cuproptosis in Alzheimer's Disease[J]. ACS Chem Neurosci, 2023, 14(19): 3564-3587. DOI: 10.1021/acschemneuro.3c00343.
[45]
MI Y, GAO X, XU H, et al. The Emerging Roles of Ferroptosis in Huntington's Disease[J]. Neuromolecular Med, 2019, 21(2): 110-119. DOI: 10.1007/s12017-018-8518-6.
[46]
CAO H, ZUO C, HUANG Y, et al. Hippocampal proteomic analysis reveals activation of necroptosis and ferroptosis in a mouse model of chronic unpredictable mild stress-induced depression[J/OL]. Behav Brain Res, 2021, 407: 113261 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S0166432821001492?via%3Dihub. DOI: 10.1016/j.bbr.2021.113261.
[47]
ZENG T, LI J, XIE L, et al. Nrf2 regulates iron-dependent hippocampal synapses and functional connectivity damage in depression[J/OL]. J Neuroinflammation, 2023, 20(1): 212 [2024-11-11]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02875-x. DOI: 10.1186/s12974-023-02875-x.
[48]
NIKPARAST F, GANJI Z, DANESH DOUST M, et al. Brain pathological changes during neurodegenerative diseases and their identification methods: How does QSM perform in detecting this process?[J/OL]. Insights Imaging, 2022, 13(1): 74 [2024-11-11]. https://insightsimaging.springeropen.com/articles/10.1186/s13244-022-01207-6. DOI: 10.1186/s13244-022-01207-6.
[49]
LIU X W, ZHONG J Y, LIU J, et al. Advances in quantitative susceptibility mapping(QSM)for clinical applications in regions outside the brain[J]. Journal of Medical Imaging, 2024, 34(8):130-133.
[50]
GUAN X, LANCIONE M, AYTON S, et al. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping[J/OL]. NeuroImage, 2024, 289: 120547 [2024-11-11]. https://www.sciencedirect.com/science/article/pii/S1053811924000429?via%3Dihub. DOI: 10.1016/j.neuroimage.2024.120547.
[51]
LIANG W, ZHOU B, MIAO Z, et al. Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder[J/OL]. Nutrients, 2024, 16(13): 2073 [2024-11-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11243628/. DOI: 10.3390/nu16132073.
[52]
DUAN X, XIE Y, ZHU X, et al. Quantitative Susceptibility Mapping of Brain Iron Deposition in Patients with Recurrent Depression[J]. Psychiatry Investig, 2022, 19(8): 668-675. DOI: 10.30773/pi.2022.0110.
[53]
SHIBUKAWA S, KAN H, HONDA S, et al. Alterations in subcortical magnetic susceptibility and disease-specific relationship with brain volume in major depressive disorder and schizophrenia[J/OL]. Transl Psychiatry, 2024, 14(1): 164 [2024-11-11]. https://www.nature.com/articles/s41398-024-02862-7. DOI: 10.1038/s41398-024-02862-7.
[54]
WANG F, ZHANG M, LI Y, et al. Alterations in brain iron deposition with progression of late-life depression measured by magnetic resonance imaging (MRI)-based quantitative susceptibility mapping[J]. Quant Imaging Med Surg, 2022, 12(7): 3873-3888. DOI: 10.21037/qims-21-1137.
[55]
ZHANG G, LV S, ZHONG X, et al. Ferroptosis: a new antidepressant pharmacological mechanism[J/OL]. Front Pharmacol, 2023, 14: 1339057 [2024-11-11]. https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1339057/full. DOI: 10.3389/fphar.2023.1339057.
[56]
HE N, SETHI SK, ZHANG C, et al. Visualizing the lateral habenula using susceptibility weighted imaging and quantitative susceptibility mapping[J]. Magn Reson Imaging, 2020, 65: 55-61. DOI: 10.1016/j.mri.2019.09.005.
[57]
CUI F, WANG C, WANG Y, et al. Fundamentals of MAGiC technology and progress in clinical research[J]. Journal of Clinical Radiology, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
[58]
HAACKE E M, CHEN Y, UTRIAINEN D, et al. STrategically Acquired Gradient Echo (STAGE) imaging, part III: Technical advances and clinical applications of a rapid multi-contrast multi-parametric brain imaging method[J]. Magn Reson Imaging, 2020, 65: 15-26. DOI: 10.1016/j.mri.2019.09.006.
[59]
MONGA A, SINGH D, DE MOURA H L, et al. Emerging Trends in Magnetic Resonance Fingerprinting for Quantitative Biomedical Imaging Applications: A Review[J/OL]. Bioengineering, 2024, 11(3): 236 [2024-11-11]. https://www.mdpi.com/2306-5354/11/3/236. DOI: 10.3390/bioengineering11030236.
[60]
YE Y, LYU J, HU Y, et al. MULTI-parametric MR imaging with fLEXible design (MULTIPLEX)[J]. Magn Reson Med, 2022, 87(2): 658-673. DOI: 10.1002/mrm.28999.
[61]
MAZUROWSKI M A, BUDA M, SAHA A, et al. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI[J]. J Magn Reson Imaging, 2019, 49(4): 939-954. DOI: 10.1002/jmri.26534.
[62]
PARK J E, KICKINGEREDER P, KIM H S, et al. Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging[J]. Korean J Radiol, 2020, 21(10): 1126-1137. DOI: 10.3348/kjr.2019.0847.

PREV Research progress in magnetic resonance imaging of generalized anxiety disorder
NEXT Advances in multimodal MRI of acupuncture for post-stroke depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn