Share:
Share this content in WeChat
X
Review
Research progress in the application of surface-based morphometry for brain structural MRI study in major depressive disorder
YANG Fan  XU Li  LIU Wei  YANG Jianzhong 

Cite this article as: YANG F, XU L, LIU W, et al. Research progress in the application of surface-based morphometry for brain structural MRI study in major depressive disorder[J]. Chin J Magn Reson Imaging, 2025, 16(3): 116-121, 132. DOI:10.12015/issn.1674-8034.2025.03.019.


[Abstract] Major depressive disorder (MDD) exhibits significant heterogeneity in its clinical symptoms, treatment responses, and pathological mechanisms, making it challenging for traditional neuroimaging techniques to untangle its complex brain structural characteristics. Surface-based morphometry (SBM), which quantifies indicators such as cortical thickness (CT), surface area (SA), and local gyrification index (LGI), offers a fresh perspective for elucidating the neurobiological heterogeneity of MDD. This article systematically reviews the critical advancements of SBM in MDD research, aiming to provide crucial imaging biomarkers for the precise classification of MDD.
[Keywords] depression;magnetic resonance imaging;structural magnetic resonance imaging;surface-based morphometry;surface area

YANG Fan1, 2   XU Li1   LIU Wei3   YANG Jianzhong1, 4*  

1 Department of Psychiatry, Second Affiliated Hospital of Kunming Medical University, Kunming 650000, China

2 Department of Clinical Medicine, Baoshan College of Traditional Chinese Medicine, Baoshan 678000, China

3 First Department of Mood Disorder, Second Affiliated Hospital of Xinxiang Medical College, Xinxiang 453002, China

4 Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China

Corresponding author: YANG J Z, E-mail: jzhyang2004@163.com

Conflicts of interest   None.

Received  2025-01-16
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.019
Cite this article as: YANG F, XU L, LIU W, et al. Research progress in the application of surface-based morphometry for brain structural MRI study in major depressive disorder[J]. Chin J Magn Reson Imaging, 2025, 16(3): 116-121, 132. DOI:10.12015/issn.1674-8034.2025.03.019.

[1]
PILMEYER J, LAMERICHS R, SCHIELEN S, et al. Multi-modal MRI for objective diagnosis and outcome prediction in depression[J/OL]. Neuroimage Clin, 2024, 44: 103682 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/39395373/. DOI: 10.1016/j.nicl.2024.103682.
[2]
VAN HOUTUM L, VAN SCHIE C C, WEVER M, et al. Aberrant neural network activation during reliving of autobiographical memories in adolescent depression[J]. Cortex, 2023, 168: 14-26. DOI: 10.1016/j.cortex.2023.06.021.
[3]
SCHMAAL L, POZZI E, C HO T, et al. ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing[J/OL]. Transl Psychiatry, 2020, 10(1): 172 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/32472038/. DOI: 10.1038/s41398-020-0842-6.
[4]
VELÁZQUEZ J, MATEOS J, PASAYE E H, et al. Cortical Thickness Estimation: A Comparison of FreeSurfer and Three Voxel-Based Methods in a Test-Retest Analysis and a Clinical Application[J]. Brain Topogr, 2021, 34(4): 430-441. DOI: 10.1007/s10548-021-00852-2.
[5]
LIN Q, JIN S, YIN G, et al. Cortical Morphological Networks Differ Between Gyri and Sulci[J/OL]. Neurosci Bull, 2024 [2025-01-16]. https://link.springer.com/article/10.1007/s12264-024-01262-7. DOI: 10.1007/s12264-024-01262-7.
[6]
BHAGWAT N, BARRY A, DICKIE E W, et al. Understanding the impact of preprocessing pipelines on neuroimaging cortical surface analyses[J/OL]. Gigascience, 2021, 10(1): giaa155 [2025-01-16]. https://europepmc.org/article/MED/33481004. DOI: 10.1093/gigascience/giaa155.
[7]
GASER C, DAHNKE R, THOMPSON P M, et al. CAT: a computational anatomy toolbox for the analysis of structural MRI data[J/OL]. Gigascience, 2024, 13: giae049 [2025-01-16]. https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giae049/7727520. DOI: 10.1093/gigascience/giae049.
[8]
OMIDYEGANEH M, KHALILI-MAHANI N, BERMUDEZ P, et al. A Simulation Toolkit for Testing the Sensitivity and Accuracy of Corticometry Pipelines[J/OL]. Front Neuroinform, 2021, 15: 665560 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/34381348/. DOI: 10.3389/fninf.2021.665560.
[9]
KELLY C E, THOMPSON D K, ADAMSON C L, et al. Cortical growth from infancy to adolescence in preterm and term-born children[J]. Brain, 2024, 147(4): 1526-1538. DOI: 10.1093/brain/awad348.
[10]
CHRISTIANS J K, AHMADZADEH-SEDDEIGHI S, BILAl A, et al. Sex differences in the effects of prematurity and/or low birthweight on neurodevelopmental outcomes: systematic review and meta-analyses[J/OL]. Biol Sex Differ, 2023, 14(1): 47 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/37434174/. DOI: 10.1186/s13293-023-00532-9.
[11]
PANG X, WU D, WANG H, et al. Cortical morphological alterations in adolescents with major depression and non-suicidal self-injury[J/OL]. Neuroimage Clin, 2024, 44: 103701 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/39500145/. DOI: 10.1016/j.nicl.2024.103701.
[12]
KIM Y K, HAN K M. Neural substrates for late-life depression: A selective review of structural neuroimaging studies[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 104: 110010 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/32544600/. DOI: 10.1016/j.pnpbp.2020.110010.
[13]
HANG Y Q, QIU M H, PENG D H. The Application of SBM in the Study of Major Depressive Disorder[J]. Chinese Computed Medical Imaging, 2016, 22(2): 187-190. DOI: 10.19627/j.cnki.cn31-1700/th.2016.02.018.
[14]
CHEN Z, XU T, LI Q, et al. Grey matter abnormalities in major depressive disorder patients with suicide attempts: A systematic review of age-specific differences[J/OL]. Heliyon, 2024, 10(3): e24894 [2025-01-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10839985/. DOI: 10.1016/j.heliyon.2024.e24894.
[15]
ZHOU X, YOU M Z, WAN K, et al. Cortical morphological study in cerebral small vessel disease patients with subcortical ischemic depression[J]. Zhonghua Yi Xue Za Zhi, 2021, 101(15): 1057-1063. DOI: 10.3760/cma.j.cn112137-20200826-02471.
[16]
YANG J, CHEN C, LIU Z, et al. Subtyping drug-free first-episode major depressive disorder based on cortical surface area alterations[J]. J Affect Disord, 2025, 368: 100-106. DOI: 10.1016/j.jad.2024.09.033.
[17]
ESCORIAL S, ROMÁN F J, MARTÍNEZ K, et al. Sex differences in neocortical structure and cognitive performance: A surface-based morphometry study[J]. Neuroimage, 2015, 104: 355-365. DOI: 10.1016/j.neuroimage.2014.09.035.
[18]
MOU J, ZHENG T, LONG Z, et al. Sex differences of brain cortical structure in major depressive disorder[J/OL]. Psychoradiology, 2023, 3: kkad014 [2025-01-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10939343/. DOI: 10.1093/psyrad/kkad014.
[19]
YANG W, JIANG Y, MA L, et al. Cortical and subcortical morphological alterations in postpartum depression[J]. Behav Brain Res, 2023, 447: 114414 [2025-01-16]. DOI: 10.1016/j.bbr.2023.114414.
[20]
LI Y, CHU T, CHE K, et al. Abnormalities of cortical structures in patients with postpartum depression: A surface-based morphometry study[J/OL]. Behav Brain Res, 2021, 410: 113340 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/33945830/. DOI: 10.1016/j.bbr.2021.113340.
[21]
DONNELLY B M, HSU D T, GARDUS J, et al. Orbitofrontal and striatal metabolism, volume, thickness and structural connectivity in relation to social anhedonia in depression: A multimodal study[J/OL]. Neuroimage Clin, 2024, 41: 103553 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/38134743/. DOI: 10.1016/j.nicl.2023.103553.
[22]
LI Q, ZHAO Y, CHEN Z, et al. Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder[J]. Neuropsychopharmacology, 2020, 45(4): 703-712. DOI: 10.1038/s41386-019-0563-9.
[23]
YUAN L, CHU Z, CHEN X, et al. Changes of cortical thickness in the first episode, drug-naive depression patients with and without melancholic features[J/OL]. Psychiatry Res Neuroimaging, 2023, 334: 111683 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/37480707/. DOI: 10.1016/j.pscychresns.2023.111683.
[24]
NATSUYAMA T, OKAMOTO N, WATANABE K, et al. Gyrification patterns in first-episode, drug-naïve major depression: Associations with plasma levels of brain-derived neurotrophic factor and psychiatric symptoms[J/OL]. Front Psychiatry, 2022, 13: 1031386 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/36684011/. DOI: 10.3389/fpsyt.2022.1031386.
[25]
LIU J, CHEN X, LIU C, et al. Left Cerebral Cortex Complexity in Patients with Major Depression Disorder: A Small-Sample Pilot Study[J]. Psychiatry Clin Psychopharmacol, 2021, 31(3): 245-251. DOI: 10.5152/pcp.2021.20060.
[26]
GOU M, CHEN W, LI Y, et al. Immune-Inflammatory Response And Compensatory Immune-Regulatory Reflex Systems And White Matter Integrity in Schizophrenia[J]. Schizophr Bull, 2024, 50(1): 199-209. DOI: 10.1093/schbul/sbad114.
[27]
CAO H L, YU H, XUE R, et al. Convergence and divergence in neurostructural signatures of unipolar and bipolar depressions: Insights from surface-based morphometry and prospective follow-up[J]. J Affect Disord, 2024, 366: 8-15. DOI: 10.1016/j.jad.2024.08.101.
[28]
SCHRÄDER J, MELLER T, EVERMANN U, et al. Multi-modal morphometric association study of subclinical depressive symptoms using voxel-based morphometry, cortical thickness, and diffusion tensor imaging (DTI)[J]. J Affect Disord, 2024, 351: 755-764. DOI: 10.1016/j.jad.2024.01.221.
[29]
KANG Y, KANG W, KIM A, et al. Decreased cortical gyrification in major depressive disorder[J]. Psychol Med, 2023, 53(16): 7512-7524. DOI: 10.1017/S0033291723001216.
[30]
CHEN C, LIU Z, ZUO J, et al. Decreased Cortical Folding of the Fusiform Gyrus and Its Hypoconnectivity with Sensorimotor Areas in Major Depressive Disorder[J]. J Affect Disord, 2021, 295: 657-664. DOI: 10.1016/j.jad.2021.08.148.
[31]
HAN Y, GAO Y, WANG S, et al. Cortical folding in distinguishing first-episode bipolar and unipolar depression[J]. J Affect Disord, 2025, 369: 897-905. DOI: 10.1016/j.jad.2024.10.021.
[32]
HU X, ZHANG L, LIANG K, et al. Sex-specific alterations of cortical morphometry in treatment-naïve patients with major depressive disorder[J]. Neuropsychopharmacology, 2022, 47(11): 2002-2009. DOI: 10.1038/s41386-021-01252-7.
[33]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[34]
LI H D, WANG J, NIU J L. MRI research progress of brain function and structure in patients with major depressive disorder before and after treatment[J]. Chin J Magn Reson Imaging, 2022, 13(3): 143-146. DOI: 10.12015/issn.1674-8034.2022.03.035.
[35]
MOTTER J N, LEE S, SNEED J R, et al. Cortical thickness predicts remission of depression with antidepressants in patients with late-life depression and cognitive impairment[J]. J Affect Disord, 2021, 295: 438-445. DOI: 10.1016/j.jad.2021.08.062.
[36]
YAO Z, FU Y, WU J, et al. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients[J]. Brain Imaging Behav, 2020, 14(3): 653-667. DOI: 10.1007/s11682-018-0003-1.
[37]
MA H, ZHANG D, WANG Y, et al. Prediction of early improvement of major depressive disorder to antidepressant medication in adolescents with radiomics analysis after ComBat harmonization based on multiscale structural MRI[J/OL]. BMC Psychiatry, 2023, 23(1): 466 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/37365541/. DOI: 10.1186/s12888-023-04966-8.
[38]
WANG Z, ZHANG D, GUAN M, et al. Increased thalamic gray matter volume induced by repetitive transcranial magnetic stimulation treatment in patients with major depressive disorder[J/OL]. Front Psychiatry, 2023, 14: 1163067 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/37252157/. DOI: 10.3389/fpsyt.2023.1163067.
[39]
HARIKA-GERMANEAU G, WASSOUF I, LE TUTOUR T, et al. Baseline Clinical and Neuroimaging Biomarkers of Treatment Response to High-Frequency rTMS Over the Left DLPFC for Resistant Depression[J/OL]. Front Psychiatry, 2022, 13: 894473 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/35669263/. DOI: 10.3389/fpsyt.2022.894473.
[40]
TOZZI L, GARCZAREK L, JANOWITZ D, et al. Interactive impact of childhood maltreatment, depression, and age on cortical brain structure: mega-analytic findings from a large multi-site cohort[J]. Psychol Med, 2020, 50(6): 1020-1031. DOI: 10.1017/S003329171900093X.
[41]
FRODL T, JANOWITZ D, SCHMAAL L, et al. Childhood adversity impacts on brain subcortical structures relevant to depression[J]. J Psychiatr Res, 2017, 86: 58-65. DOI: 10.1016/j.jpsychires.2016.11.010.
[42]
YU M, CULLEN N, LINN K A, et al. Structural brain measures linked to clinical phenotypes in major depression replicate across clinical centres[J]. Mol Psychiatry, 2021, 26(7): 2764-2775. DOI: 10.1038/s41380-021-01039-8.
[43]
KIM S Y, AN S J, HAN J H, et al. Childhood abuse and cortical gray matter volume in patients with major depressive disorder[J/OL]. Psychiatry Res, 2023, 319: 114990 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/36495619/. DOI: 10.1016/j.psychres.2022.114990.
[44]
JONES J S, GOLDSTEIN S J, WANG J, et al. Evaluation of brain structure and metabolism in currently depressed adults with a history of childhood trauma[J/OL]. Transl Psychiatry, 2022, 12(1): 392 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/36115855/. DOI: 10.1038/s41398-022-02153-z.
[45]
NOGOVITSYN N, ADDINGTON J, SOUZA R, et al. Childhood trauma and amygdala nuclei volumes in youth at risk for mental illness[J]. Psychol Med, 2022, 52(6): 1192-1199. DOI: 10.1017/S0033291720003177.
[46]
LUSSIER A A, SMITH B J, FISHER J, et al. DNA methylation mediates the link between adversity and depressive symptoms[J]. Nature Mental Health, 2024, 2(12): 1476-1485. DOI: 10.1038/s44220-024-00345-8.
[47]
MCCRAW A, SULLIVAN J, LOWERY K, et al. Dynamic Field Theory of Executive Function: Identifying Early Neurocognitive Markers[J]. Monogr Soc Res Child Dev, 2024, 89(3): 7-109. DOI: 10.1111/mono.12478.
[48]
KJELKENES R, WOLFERS T, ALNÆS D, et al. Deviations from normative brain white and gray matter structure are associated with psychopathology in youth[J/OL]. Dev Cogn Neurosci, 2022, 58: 101173 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/36332329/. DOI: 10.1016/j.dcn.2022.101173.
[49]
TAUBERT M, ZIEGLER G, LEHMANN N. Higher surface folding of the human premotor cortex is associated with better long-term learning capability[J/OL]. Commun Biol, 2024, 7(1): 635 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/38796622/. DOI: 10.1038/s42003-024-06309-z.
[50]
MODABBERNIA A, JANIRI D, DOUCET G E, et al. Multivariate Patterns of Brain-Behavior-Environment Associations in the Adolescent Brain and Cognitive Development Study[J]. Biol Psychiatry, 2021, 89(5): 510-520. DOI: 10.1016/j.biopsych.2020.08.014.
[51]
WANG J, LIANG X, LU J, et al. Cortical and subcortical gray matter abnormalities in mild cognitive impairment[J]. Neuroscience, 2024, 557: 81-88. DOI: 10.1016/j.neuroscience.2024.07.036.
[52]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of Using Both Voxel- and Surface-based Morphometry in Cortical Morphology Analysis: A Review of Various Applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.

PREV Advances in multimodal MRI of acupuncture for post-stroke depression
NEXT Research progress of quantitative susceptibility mapping in Parkinson,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn