Share:
Share this content in WeChat
X
Review
Research progress of quantitative susceptibility mapping in Parkinson's disease
SHI Yue  DONG Linsong  CHEN Shaohua  LI Hongyi  DU Yuxin  WEI Xiufang 

Cite this article as: SHI Y, DONG L S, CHEN S H, et al. Research progress of quantitative susceptibility mapping in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(3): 122-126. DOI:10.12015/issn.1674-8034.2025.03.020.


[Abstract] Parkinson's disease (PD) is a late-onset neurodegenerative disorder with an increasing incidence year by year. The dysregulation of iron homeostasis in the brain is regarded as one of the significant pathological features of PD. In recent years, remarkable progress has been made in the field of neuroimaging, which has opened up new vistas for the clinical diagnosis of PD and the in-depth exploration of its pathological mechanisms. Against this backdrop, quantitative susceptibility mapping (QSM) technology, as an advanced magnetic resonance imaging modality, utilizes the phase information in magnetic resonance imaging to achieve an accurate quantitative assessment of iron content in brain tissue. This paper reviews the imaging principle of QSM technology and its potential value and application prospects in the diagnosis of PD, aiming to provide new insights for PD diagnosis.
[Keywords] Parkinson's disease;quantitative susceptibility mapping;magnetic resonance imaging;iron deposition

SHI Yue1   DONG Linsong1   CHEN Shaohua1   LI Hongyi2   DU Yuxin1   WEI Xiufang2*  

1 Mudanjiang Medical University, Mudanjiang 157011, China

2 Department of Magnetic Resonance Imaging, Imaging Center, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang 157011, China

Corresponding author: WEI X F, E-mail: 253990251@qq.com

Conflicts of interest   None.

Received  2025-01-03
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.020
Cite this article as: SHI Y, DONG L S, CHEN S H, et al. Research progress of quantitative susceptibility mapping in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(3): 122-126. DOI:10.12015/issn.1674-8034.2025.03.020.

[1]
KULCSAROVA K, SKORVANEK M, POSTUMA R B, et al. Defining Parkinson's Disease: Past and Future[J]. J Parkinsons Dis, 2024, 14(S2): S257-S271. DOI: 10.3233/JPD-230411.
[2]
WANG Q, WANG M, CHOI I, et al. Molecular profiling of human substantia nigra identifies diverse neuron types associated with vulnerability in Parkinson's disease[J/OL]. Sci Adv, 2024, 10(2): eadi8287 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/38198537/. DOI: 10.1126/sciadv.adi8287.
[3]
MORRIS H R, SPILLANTINI M G, SUE C M, et al. The pathogenesis of Parkinson's disease[J]. Lancet, 2024, 403(10423): 293-304. DOI: 10.1016/S0140-6736(23)01478-2.
[4]
RIEDERER P, NAGATSU T, YOUDIM M B H, et al. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson's disease[J]. J Neural Transm (Vienna), 2023, 130(5): 627-646. DOI: 10.1007/s00702-023-02630-9.
[5]
HARADA T, KUDO K, FUJIMA N, et al. Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications[J]. Radiographics, 2022, 42(4): 1161-1176. DOI: 10.1148/rg.210054.
[6]
MA J, LIU J, CHEN S, et al. Understanding the Mechanism of Ferroptosis in Neurodegenerative Diseases[J/OL]. Front Biosci (Landmark Ed), 2024, 29(8): 291 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/39206899/. DOI: 10.31083/j.fbl2908291.
[7]
SOFIC E, PAULUS W, JELLINGER K, et al. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains[J]. J Neurochem, 1991, 56(3): 978-982. DOI: 10.1111/j.1471-4159.1991.tb02017.x.
[8]
KAMATH T, ABDULRAOUF A, BURRIS S J, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease[J]. Nat Neurosci, 2022, 25(5): 588-595. DOI: 10.1038/s41593-022-01061-1.
[9]
COSTA I, BARBOSA D J, BENFEITO S, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases[J/OL]. Pharmacol Ther, 2023, 244: 108373 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/36894028/. DOI: 10.1016/j.pharmthera.2023.108373.
[10]
BERRY T M, MOUSTAFA A A. A novel treatment strategy to prevent Parkinson's disease: focus on iron regulatory protein 1 (IRP1)[J]. Int J Neurosci, 2023, 133(1): 67-76. DOI: 10.1080/00207454.2021.1885403.
[11]
CHEN R, GU X, WANG X. α-Synuclein in Parkinson's disease and advances in detection[J]. Clin Chim Acta, 2022, 529: 76-86. DOI: 10.1016/j.cca.2022.02.006.
[12]
AGOSTINI F, BUBACCO L, CHAKRABARTI S, et al. α-Synuclein Toxicity in Drosophila melanogaster Is Enhanced by the Presence of Iron: Implications for Parkinson's Disease[J/OL]. Antioxidants (Basel), 2023, 12(2): 261 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/36829820/. DOI: 10.3390/antiox12020261.
[13]
SHEN Q Q, JV X H, MA X Z, et al. Cell senescence induced by toxic interaction between α-synuclein and iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson's disease[J]. Acta Pharmacol Sin, 2024, 45(2): 268-281. DOI: 10.1038/s41401-023-01153-z.
[14]
GAETA M, CAVALLARO M, VINCI S L, et al. Magnetism of materials: theory and practice in magnetic resonance imaging[J/OL]. Insights Imaging, 2021, 12(1): 179 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/34862955/. DOI: 10.1186/s13244-021-01125-z.
[15]
GUAN X, LANCIONE M, AYTON S, et al. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping[J/OL]. Neuroimage, 2024, 289: 120547 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/38373677/. DOI: 10.1016/j.neuroimage.2024.120547.
[16]
HALLER S, HAACKE E M, THURNHER M M, et al. Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
[17]
CHEN H, YANG A, HUANG W, et al. Associations of quantitative susceptibility mapping with cortical atrophy and brain connectome in Alzheimer's disease: A multi-parametric study[J/OL]. Neuroimage, 2024, 290: 120555 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/38447683/. DOI: 10.1016/j.neuroimage.2024.120555.
[18]
CHEN M, WANG Y, ZHANG C, et al. Free water and iron content in the substantia nigra at different stages of Parkinson's disease[J/OL]. Eur J Radiol, 2023, 167: 111030 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/37579561/. DOI: 10.1016/j.ejrad.2023.111030.
[19]
FUSHIMI Y, NAKAJIMA S, SAKATA A, et al. Value of Quantitative Susceptibility Mapping in Clinical Neuroradiology[J]. J Magn Reson Imaging, 2024, 59(6): 1914-1929. DOI: 10.1002/jmri.29010.
[20]
DIMOV A V, LI J, NGUYEN T D, et al. QSM Throughout the Body[J]. J Magn Reson Imaging, 2023, 57(6): 1621-1640. DOI: 10.1002/jmri.28624.
[21]
JIANG S, SHAO H, ABDURAHMAN A, et al. Evaluation of Brain Iron Deposition in Early and Advanced Patients with Parkinson's Disease Using Quantitative Susceptibility Mapping[J]. Chin Comput Med Imag, 2022, 28(4): 337-341. DOI: 10.19627/j.cnki.cn31-1700/th.2022.04.009.
[22]
CHEN Q, CHEN Y, ZHANG Y, et al. Iron deposition in Parkinson's disease by quantitative susceptibility mapping[J/OL]. BMC Neurosci, 2019, 20(1): 23 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/31117957/. DOI: 10.1186/s12868-019-0505-9.
[23]
DEISTUNG A, JÄSCHKE D, DRAGANOVA R, et al. Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias[J/OL]. Brain Commun, 2022, 4(1): fcab306 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/35291442/. DOI: 10.1093/braincomms/fcab306.
[24]
WU M Z, LUAN J X, ZHANG C C, et al. Quantitative susceptibility mapping of substantia nigra in the diagnosis of Parkinson's disease: A Meta analysis[J]. Chin J Magn Reson Imaging, 2023, 14(2): 6-11. DOI: 10.12015/issn.1674-8034.2023.02.002.
[25]
FU X, DENG W, CUI X, et al. Time-Specific Pattern of Iron Deposition in Different Regions in Parkinson's Disease Measured by Quantitative Susceptibility Mapping[J/OL]. Front Neurol, 2021, 12: 631210 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/34421781/. DOI: 10.3389/fneur.2021.631210.
[26]
LI K R, AVECILLAS - CHASIN J, NGUYEN T D, et al. Quantitative evaluation of brain iron accumulation in different stages of Parkinson's disease[J]. J Neuroimaging, 2022, 32(2): 363-371. DOI: 10.1111/jon.12957.
[27]
THOMAS G E C, HANNAWAY N, ZARKALI A, et al. Longitudinal Associations of Magnetic Susceptibility with Clinical Severity in Parkinson's Disease[J]. Mov Disord, 2024, 39(4): 546-559. DOI: 10.1002/mds.29702.
[28]
SADEGHI F, PÖTTER-NERGER M, GRIMM K, et al. Smaller Cerebellar Lobule VIIb is Associated with Tremor Severity in Parkinson's Disease[J]. Cerebellum, 2024, 23(2): 355-362. DOI: 10.1007/s12311-023-01532-6.
[29]
CHEN J, CAI T, LI Y, et al. Different iron deposition patterns in Parkinson's disease subtypes: a quantitative susceptibility mapping study[J]. Quant Imaging Med Surg, 2020, 10(11): 2168-2176. DOI: 10.21037/qims-20-285.
[30]
GUAN X, XUAN M, GU Q, et al. Influence of regional iron on the motor impairments of Parkinson's disease: A quantitative susceptibility mapping study[J]. J Magn Reson Imaging, 2017, 45(5): 1335-1342. DOI: 10.1002/jmri.25434.
[31]
FALLA M, COSSU G, DI FONZO A. Freezing of gait: overview on etiology, treatment, and future directions[J]. Neurol Sci, 2022, 43(3): 1627-1639. DOI: 10.1007/s10072-021-05796-w.
[32]
NATHOO N, GEE M, NELLES K, et al. Quantitative Susceptibility Mapping Changes Relate to Gait Issues in Parkinson's Disease[J]. Can J Neurol Sci, 2023, 50(6): 853-860. DOI: 10.1017/cjn.2022.316.
[33]
YAN Y, WANG Z, WEI W, et al. Correlation of brain iron deposition and freezing of gait in Parkinson's disease: a cross-sectional study[J]. Quant Imaging Med Surg, 2023, 13(12): 7961-7972. DOI: 10.21037/qims-23-267.
[34]
NAKASHIMA M, KAN H, KAWAI T, et al. Quantitative susceptibility mapping analyses of white matter in Parkinson's disease using susceptibility separation technique[J/OL]. Parkinsonism Relat Disord, 2024, 128: 107135 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/39278120/. DOI: 10.1016/j.parkreldis.2024.107135.
[35]
GUO Y, LIAN D L, JIN L R, et al. The characteristics of subcortical nuclei iron deposition in de novo Parkinson disease with mild cognitive impairment using quantitative sensitivity mapping[J]. Chin J Clin Med, 2023, 30(2): 221-228. DOI: 10.12025/j.issn.1008-6358.2023.20222307.
[36]
LI D T H, HUI E S, CHAN Q, et al. Quantitative susceptibility mapping as an indicator of subcortical and limbic iron abnormality in Parkinson's disease with dementia[J]. Neuroimage Clin, 2018, 20: 365-373. DOI: 10.1016/j.nicl.2018.07.028.
[37]
CHENG Z, ZHANG J, HE N, et al. Radiomic Features of the Nigrosome-1 Region of the Substantia Nigra: Using Quantitative Susceptibility Mapping to Assist the Diagnosis of Idiopathic Parkinson's Disease[J/OL]. Front Aging Neurosci, 2019, 11: 167 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/31379555/. DOI: 10.3389/fnagi.2019.00167.
[38]
KANG J J, CHEN Y, XU G D, et al. Combining quantitative susceptibility mapping to radiomics in diagnosing Parkinson's disease and assessing cognitive impairment[J]. Eur Radiol, 2022, 32(10): 6992-7003. DOI: 10.1007/s00330-022-08790-8.
[39]
XIAO B, HE N, WANG Q, et al. Quantitative susceptibility mapping based hybrid feature extraction for diagnosis of Parkinson's disease[J/OL]. Neuroimage Clin, 2019, 24: 102070 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/31734535/. DOI: 10.1016/j.nicl.2019.102070.
[40]
MAZZUCCHI S, FROSINI D, COSTAGLI M, et al. Quantitative susceptibility mapping in atypical Parkinsonisms[J/OL]. Neuroimage Clin, 2019, 24: 101999 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/31539801/. DOI: 10.1016/j.nicl.2019.101999.
[41]
JIN J, SU D, ZHANG J, et al. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies[J/OL]. Chin Med J (Engl), 2024 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/38809051/. DOI: 10.1097/CM9.0000000000003167.
[42]
MARXREITER F, LAMBRECHT V, MENNECKE A, et al. Parkinson's disease or multiple system atrophy: potential separation by quantitative susceptibility mapping[J/OL]. Ther Adv Neurol Disord, 2023, 16: 17562864221143834 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/36846471/. DOI: 10.1177/17562864221143834.
[43]
HARIZ M, BLOMSTEDT P. Deep brain stimulation for Parkinson's disease[J]. J Intern Med, 2022, 292(5): 764-778. DOI: 10.1111/joim.13541.
[44]
RISSARDO J P, VORA N M, TARIQ I, et al. Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review[J/OL]. Medicina (Kaunas), 2023, 59(11): 1991 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/38004040/. DOI: 10.3390/medicina59111991.
[45]
UMEMURA A. Deep Brain Stimulation for Parkinson's Disease[J]. Juntendo Iji Zasshi, 2023, 69(1): 21-29. DOI: 10.14789/jmj.JMJ22-0041-R.
[46]
RASHID T, HWANG R, DIMARZIO M, et al. Evaluating the role of 1.5T quantitative susceptibility mapping for subthalamic nucleus targeting in deep brain stimulation surgery[J]. J Neuroradiol, 2021, 48(1): 37-42. DOI: 10.1016/j.neurad.2019.04.007.
[47]
DIMOV A, PATEL W, YAO Y, et al. Iron concentration linked to structural connectivity in the subthalamic nucleus: implications for deep brain stimulation[J]. J Neurosurg, 2019, 132(1): 197-204. DOI: 10.3171/2018.8.JNS18531.
[48]
YU K, REN Z, LI J, et al. Direct visualization of deep brain stimulation targets in patients with Parkinson's disease via 3-T quantitative susceptibility mapping[J]. Acta Neurochir (Wien), 2021, 163(5): 1335-1345. DOI: 10.1007/s00701-021-04715-4.
[49]
WEI H, ZHANG C, WANG T, et al. Precise targeting of the globus pallidus internus with quantitative susceptibility mapping for deep brain stimulation surgery[J]. J Neurosurg, 2019, 133(5): 1605-1611. DOI: 10.3171/2019.7.JNS191254.
[50]
MATSUURA K, II Y, MAEDA M, et al. Pulvinar quantitative susceptibility mapping predicts visual hallucinations post-deep brain stimulation in Parkinson's disease[J/OL]. Brain Behav, 2023, 13(11): e3263 [2024-12-23]. https://pubmed.ncbi.nlm.nih.gov/37743594/. DOI: 10.1002/brb3.3263.

PREV Research progress in the application of surface-based morphometry for brain structural MRI study in major depressive disorder
NEXT Research progress in central nervous system diseases and the brain lymphatic system
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn