Share:
Share this content in WeChat
X
Review
Progress of multimodal MRI research on central abnormalities induced by chemotherapy-induced peripheral neuropathy in breast cancer
FAN Yujie  LIAO Hai 

Cite this article as: FAN Y J, LIAO H. Progress of multimodal MRI research on central abnormalities induced by chemotherapy-induced peripheral neuropathy in breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(3): 138-142. DOI:10.12015/issn.1674-8034.2025.03.023.


[Abstract] Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse reaction in breast cancer patients, affecting not only the peripheral nervous system but also leading to structural and functional abnormalities in the central nervous system through complex neuro-immune-endocrine pathways. In recent years, with the rapid development of multimodal MRI, functional MRI (fMRI), structural MRI (sMRI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS) have provided new insights into the etiopathogenesis of CIPN-induced central abnormalities. These methods enable a comprehensive assessment of brain microstructural changes and functional network reorganization. This review summarizes the clinical applications and potential value of multimodal MRI techniques in studying central abnormalities induced by CIPN in breast cancer patients, providing a technical reference for early diagnosis and precise prevention and treatment of the disease.
[Keywords] breast cancer;chemotherapy-induced peripheral neuropathy;magnetic resonance imaging;central abnormalities;etiopathogenesis

FAN Yujie   LIAO Hai*  

Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning 530021, China

Corresponding author: LIAO H, E-mail: 42442427@qq.com

Conflicts of interest   None.

Received  2025-01-19
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.023
Cite this article as: FAN Y J, LIAO H. Progress of multimodal MRI research on central abnormalities induced by chemotherapy-induced peripheral neuropathy in breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(3): 138-142. DOI:10.12015/issn.1674-8034.2025.03.023.

[1]
SHAH A, HOFFMAN E M, MAUERMANN M L, et al. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort[J]. J Neurol Neurosurg Psychiatry, 2018, 89(6): 636-641. DOI: 10.1136/jnnp-2017-317215.
[2]
BURGESS J, FERDOUSI M, GOSAL D, et al. Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment[J]. Oncol Ther, 2021, 9(2): 385-450. DOI: 10.1007/s40487-021-00168-y.
[3]
Chinese Association of Integrative Medicine, Chinese Holistic Integrative Oncology , China Research and Promotion of Traditional Chinese Medicine. Chemotherapy-in-Duced Peripheral Neuropathic Pain by Combining Traditional Chinese and Western Medicine in China[J]. Chin J Cancer Prev Treat, 2021, 28(23): 1761-1767, 1779. DOI: 10.16073/j.cnki.cjcpt.2021.23.01.
[4]
SHI H X, TAO H T, HE J J, et al. Targeting Dkk1 Enhances the Antitumor Activity of Paclitaxel and Alleviates Chemotherapy-Induced Peripheral Neuropathy in Breast Cancer[J/OL]. Mol Cancer, 2024, 23(1): 152 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39085861/. DOI: 10.1186/s12943-024-02067-y.
[5]
NUDELMAN K N, MCDONALD B C, WANG Y, et al. Cerebral perfusion and gray matter changes associated with chemotherapy-induced peripheral neuropathy[J]. J Clin Oncol, 2016, 34(7): 677-683. DOI: 10.1200/JCO.2015.62.1276.
[6]
JOKO-FRU W Y, JEDY-AGBA E, KORIR A, et al. The evolving epidemic of breast cancer in sub-Saharan Africa: Results from the African Cancer Registry Network[J]. Int J Cancer, 2020, 147(8): 2131-2141. DOI: 10.1002/ijc.33014.
[7]
ZHAO J, LIU L, LI T T, et al. Research Progress on Chemotherapy-Induced Peripheral Neuropathy in Breast Cancer Patients[J]. Chin J Mod Nurs, 2024, 30(5): 695-700. DOI: 10.3760/cma.j.cn115682-20230812-00492.
[8]
WANG M, PEI Z, MOLASSIOTIS A. Recent advances in managing chemotherapy-induced peripheral neuropathy: A systematic review[J/OL]. Eur J Oncol Nurs, 2022, 58: 102134 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/35421796/. DOI: 10.1016/j.ejon.2022.102134.
[9]
XU Y, JIANG Z, CHEN X. Mechanisms Underlying Paclitaxel-Induced Neuropathic Pain: Channels, Inflammation and Immune Regulations[J/OL]. Eur J Pharmacol, 2022, 933: 175288 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/36122757/. DOI: 10.1016/j.ejphar.2022.175288.
[10]
SUI J, ZHI D, CALHOUN V D. Data-driven multimodal fusion: approaches and applications in psychiatric research[J/OL]. Psychoradiology, 2023, 3: kkad026 [2025-01-19].https://pubmed.ncbi.nlm.nih.gov/38143530/. DOI: 10.1093/psyrad/kkad026.
[11]
LESKINEN S, ALSALEK S, GALVEZ R, et al. Chemotherapy-Related Cognitive Impairment and Changes in Neural Network Dynamics: A Systematic Review[J/OL]. Neurology, 2025, 104(2): e210130 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39804577/. DOI: 10.1212/wnl.0000000000210130.
[12]
YE H H, HE H J, FANG J W, et al. Research Progress of Quantitative Multimodal Brain Imaging Tech-Nology[J]. J Image Graphics, 2022, 27(6): 1944-1955. DOI: 10.11834/jig.220153.
[13]
TAKEGUCHI R, KURODA M, TANAKA R, et al. Structural and Functional Changes in the Brains of Patients with Rett Syndrome: A Multimodal Mri Study[J/OL]. J Neurol Sci, 2022, 441: 120381 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/36027642/. DOI: 10.1016/j.jns.2022.120381.
[14]
SPINELLI E G, RIVA N, RANCOITA P M V, et al. Structural Mri Outcomes and Predictors of Disease Progression in Amyotrophic Lateral Sclerosis[J/OL]. Neuroimage Clin, 2020, 27: 102315 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/32593977/. DOI: 10.1016/j.nicl.2020.102315.
[15]
CHIARI-CORREIA R D, TUMAS V, SANTOS A C, et al. Structural and Functional Differences in the Brains of Patients with Mci with and without Depressive Symptoms and Their Relations with Alzheimer's Disease: An Mri Study[J/OL]. Psychoradiology, 2023, 3: kkad008 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/38666129/. DOI: 10.1093/psyrad/kkad008.
[16]
ZHAI H, FAN W, XIAO Y, et al. Voxel-based morphometry of grey matter structures in Parkinson's Disease with wearing-off[J]. Brain Imaging Behav, 2023, 17(6): 725-737. DOI: 10.1007/s11682-023-00793-3.
[17]
QUATTRONE A, CALOMINO C, SARICA A, et al. Neuroimaging correlates of postural instability in Parkinson's disease[J]. J Neurol, 2024, 271(4): 1910-1920. DOI: 10.1007/s00415-023-12136-9.
[18]
LI X, CHEN H, LV Y, et al. Diminished Gray Matter Density Mediates Chemotherapy Dosage-Related Cognitive Impairment in Breast Cancer Patients[J/OL]. Sci Rep, 2018, 8(1): 13801 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/30218006/. DOI: 10.1038/s41598-018-32257-w.
[19]
KHALSA S S, ADOLPHS R, CAMERON O G, et al. Interoception and mental health: a roadmap[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3(6): 501-513. DOI: 10.1016/j.bpsc.2017.12.004.
[20]
ZHANG H, LI P, LIU T, et al. Focal white matter microstructural alteration after anthracycline-based systemic treatment in long-term breast cancer survivors: a structural magnetic resonance imaging study[J]. Brain Imaging Behav, 2022, 16(2): 843-854. DOI: 10.1007/s11682-021-00551-3.
[21]
SI S, BI A, YU Z, et al. Mapping gray and white matter volume abnormalities in early-onset psychosis: an ENIGMA multicenter voxel-based morphometry study[J]. Mol Psychiatry, 2024, 29(2): 496-504. DOI: 10.1038/s41380-023-02343-1.
[22]
PIPER K, KUMAR J I, DOMINO J, et al. Consensus Review on Strategies to Improve Delivery Across the BBB Including Focused Ultrasound[J]. Neuro Oncol, 2024, 26(9): 1545-1556. DOI: 10.1093/neuonc/noae087.
[23]
ZHOU J, HOU Z, TIAN C, et al. Review of Tracer Kinetic Models in Evaluation of Gliomas Using Dynamic Contrast-Enhanced Imaging[J/OL]. Front Oncol, 2024, 14: 1380793 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/38947892/. DOI: 10.3389/fonc.2024.1380793.
[24]
DING Q, LI L, TONG Q, et al. White Matter Microstructure Alterations of the Posterior Limb of Internal Capsule in First-Episode Drug Naive Schizophrenia Patients[J/OL]. Brain Res, 2024, 1841: 149114 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/38977237/. DOI: 10.1016/j.brainres.2024.149114.
[25]
JIANG Y, LIU G, DENG B, et al. White Matter Lesions and Dti Metrics Related to Various Types of Dysfunction in Cerebral Palsy: A Meta-Analysis and Systematic Review[J/OL]. PLoS One, 2025, 20(1): e0312378 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39854387/. DOI: 10.1371/journal.pone.0312378.
[26]
AHIRE C, NYUL-TOTH A, DELFAVERO J, et al. Accelerated Cerebromicrovascular Senescence Contributes to Cognitive Decline in a Mouse Model of Paclitaxel (Taxol)-Induced Chemobrain[J/OL]. Aging Cell, 2023, 22(7): e13832 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/37243381/. DOI: 10.1111/acel.13832.
[27]
MI Z, YAO Q, QI Y, et al. Salmonella-mediated blood‒brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy[J]. Acta Pharm Sin B, 2023, 13(2): 819-833. DOI: 10.1016/j.apsb.2022.09.016.
[28]
TONG T, LU H, ZONG J, et al. Chemotherapy-related cognitive impairment in patients with breast cancer based on MRS and DTI analysis[J]. Breast Cancer, 2020, 27: 893-902. DOI: 10.1007/s12282-020-01094-z.
[29]
DEPREZ S, AMANT F, YIGIT R, et al. Chemotherapy‐induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients[J]. Hum Brain Mapp, 2011, 32(3): 480-493. DOI: 10.1002/hbm.21033.
[30]
MCDONALD B C, CONROY S K, AHLES T A, et al. Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study[J]. J Clin Oncol, 2012, 30(20): 2500-2508. DOI: 10.1200/JCO.2011.38.5674.
[31]
BILLIET T, EMSELL L, VANDENBULCKE M, et al. Recovery from chemotherapy-induced white matter changes in young breast cancer survivors?[J]. Brain Imaging Behav, 2018, 12: 64-77. DOI: 10.1007/s11682-016-9665-8.
[32]
TIAN Y, LI K, SU W. Dynamic Brain Function Analysis Based on Resting-State Fmri and Its Application in Neurodegenerative Diseases[J]. Chin J Contemp Neurol Neurosurg, 2022, 22(3): 137-141. DOI: 10.3969/j.issn.1672-6731.2022.03.003.
[33]
SONG Y Q, LI Y F, XIA J G, et al. Brain structure and functional magnetic resonance imaging in patients with breast cancer undergoing chemotherapy[J]. Chin J Magn Reson Imaging, 2024, 15(4): 20-24, 31. DOI: 10.12015/issn.1674-8034.2024.04.004.
[34]
SERETNY M, ROMANIUK L, WHALLEY H, et al. Neuroimaging reveals a potential brain-based pre-existing mechanism that confers vulnerability to development of chronic painful chemotherapy-induced peripheral neuropathy[J]. Br J Anaesth, 2023130(1): 83-93. DOI: 10.1016/j.bja.2022.09.026.
[35]
MANUWEERA T, WAGENKNECHT A, KLECKNER A S, et al. Preliminary Evaluation of Novel Bodily Attention Task to Assess the Role of the Brain in Chemotherapy-Induced Peripheral Neurotoxicity (Cipn)[J/OL]. Behav Brain Res, 2024, 460: 114803 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/38070689/. DOI: 10.1016/j.bbr.2023.114803.
[36]
WANG L, YAN Y, WANG X, et al. Executive function alternations of breast cancer patients after chemotherapy: evidence from resting-state functional MRI[J]. Acad Radiol, 2016, 23(10): 1264-1270. DOI: 10.1016/j.acra.2016.05.014.
[37]
KNOERL R, CHORNOBY Z, SMITH E M. Estimating the frequency, severity, and clustering of SPADE symptoms in chronic painful chemotherapy-induced peripheral neuropathy[J]. Pain Manag Nurs, 2018, 19(4): 354-365. DOI: 10.1016/j.pmn.2018.01.001.
[38]
WANG M, MOLASSIOTIS A. Mapping chemotherapy-induced peripheral neuropathy phenotype and health-related quality of life in patients with cancer through exploratory analysis of multimodal assessment data[J]. Support Care Cancer, 2022, 30(5): 4007-4017. DOI: 10.1007/s00520-022-06821-0.
[39]
WU Q, LI X, ZHANG Y, et al. Analgesia of Noninvasive Electrical Stimulation of the Dorsolateral Prefrontal Cortex: A Systematic Review and Meta-Analysis[J/OL]. J Psychosom Res, 2024, 185: 111868 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39142194/. DOI: 10.1016/j.jpsychores.2024.111868.
[40]
MOHAMMADI S, GHADERI S, JOUZDANI A F, et al. Differentiation between high‐grade glioma and brain metastasis using cerebral perfusion‐related parameters (cerebral blood volume and cerebral blood flow): A systematic review and meta‐analysis of perfusion‐weighted MRI techniques[J]. J Magn Reson Imaging, 2025, 61(2): 758-768. DOI: 10.1002/jmri.29473.
[41]
ZHANG J, WANG Y, WANG Y, et al. Perfusion Magnetic Resonance Imaging in the Differentiation between Glioma Recurrence and Pseudoprogression: A Systematic Review, Meta-Analysis and Meta-Regression[J/OL]. Quant Imaging Med Surg, 2022, 12(10): 4805-4822. https://pubmed.ncbi.nlm.nih.gov/36185045/. DOI: 10.21037/qims-22-32.
[42]
WOODS J G, ACHTEN E, ASLLANI I, et al. Recommendations for quantitative cerebral perfusion MRI using multi‐timepoint arterial spin labeling: Acquisition, quantification, and clinical applications[J]. Magn Reson Med, 2024, 92(2): 469-495. DOI: 10.1002/mrm.30091.
[43]
DOWNS T L, WHITESIDE E J, FOOT G, et al. Differences in total cognition and cerebrovascular function in female breast cancer survivors and cancer-free women[J]. Breast, 2023, 69: 358-365. DOI: 10.1016/j.breast.2023.03.018.
[44]
CHEN X, HE X, TAO L, et al. The Attention Network Changes in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy: Evidence from an Arterial Spin Labeling Perfusion Study[J/OL]. Sci Rep, 2017, 7: 42684 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/28209975/. DOI: 10.1038/srep42684.
[45]
SEKIGUCHI F, KAWABATA A. Role of Hmgb1 in Chemotherapy-Induced Peripheral Neuropathy[J/OL]. Int J Mol Sci, 2020, 22(1) [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/33396481/. DOI: 10.3390/ijms22010367.
[46]
NASRALLAH H A, SKINNER T E, SCHMALBROCK P, et al. Proton magnetic resonance spectroscopy (1H MRS) of the hippocampal formation in schizophrenia: a pilot study[J]. Br J Psychiatry, 1994, 165(4): 481-485. DOI: 10.1192/bjp.165.4.481.
[47]
DAIMIEL NARANJO I, BHOWMIK A, BASUKALA D, et al. Assessment of Hypoxia in Breast Cancer: Emerging Functional MR Imaging and Spectroscopy Techniques and Clinical Applications[J]. J Magn Reson Imaging, 2024, 61(1): 83-96. DOI: 10.1002/jmri.29424.
[48]
DE RUITER M B, RENEMAN L, BOOGERD W, et al. Late effects of high‐dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging[J]. Hum Brain Mapp, 2012, 33(12): 2971-2983. DOI: 10.1002/hbm.21422.
[49]
KIM H, PARK H, CHUN Y, et al. Prognostic Significance of Total Choline on in-Vivo Proton Mr Spectroscopy for Prediction of Late Recurrence in Patients with Hormone Receptor-Positive, Her2-Negative Early Breast Cancer[J/OL]. PLoS One, 2025, 20(1): e0311012 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/39746051/. DOI: 10.1371/journal.pone.0311012.
[50]
BEYER J, COUCH R, RUDDY K J, et al. Longitudinal Cognitive Function and Brain Metabolites in Women Receiving Chemotherapy for Stage 1 to 3 Breast Cancer: Observational Study[J/OL]. Medicine (Baltimore), 2023, 102(42): e35524 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/37861526/. DOI: 10.1097/md.0000000000035524.
[51]
GRIGORYANTS N F, SASS S, ALEXANDER J. Novel Technologies in Breast Imaging: A Scoping Review[J/OL]. Cureus, 2023, 15(8): e44061 [2025-01-19]. https://pubmed.ncbi.nlm.nih.gov/37746370/. DOI: 10.7759/cureus.44061.

PREV Research progress in glymphatic system of multiple sclerosis
NEXT Advances in deep residual networks for MRI classification of brain tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn