Share:
Share this content in WeChat
X
Review
Research progress on CMR andinterleukin-6 in predicting left ventricular adverse remodeling in patients with acute ST segment elevation myocardial infarction
LIU Suning  ZHANG Ziqian  YE Wenying  ZHOU Ying 

Cite this article as: LIU S N, ZHANG Z Q, YE W Y, et al. Research progress on CMR andinterleukin-6 in predicting left ventricular adverse remodeling in patients with acute ST segment elevation myocardial infarction[J]. Chin J Magn Reson Imaging, 2025, 16(3): 156-161. DOI:10.12015/issn.1674-8034.2025.03.026.


[Abstract] ST-segment elevation myocardial infarction (STEMI) is a serious cardiovascular disease associated with myocardial injury and left ventricular insufficiency. Although direct percutaneous coronary intervention (pPCI) rapidly opens the responsible vessel and improves survival, some patients still experience adverse left ventricular remodeling (ALVR), which in turn affects long-term prognosis. Interleukin-6 (IL-6), a key pro-inflammatory cytokine, plays a central role in the development and progression of cardiovascular disease. After acute myocardial infarction, IL-6 is involved in the initiation, regulation, and maintenance of the inflammatory response, and its role is dual. On the one hand, IL-6 promotes the release of inflammatory factors, which helps to remove necrotic tissue and promote myocardial repair; on the other hand, excessively elevated levels of IL-6 may lead to uncontrolled inflammation, triggering myocardial fibrosis, ventricular remodeling, and decline in cardiac function, which increases the risk of adverse cardiovascular events. Cardiac magnetic resonance (CMR), as the gold standard for evaluating cardiac structure and function, is capable of comprehensively assessing adverse LV remodeling by combining parameters such as infarct size, left ventricular ejection fraction (LVEF) and myocardial strain. Therefore, early identification of risk factors for adverse LV remodeling is crucial for improving patient prognosis. The aim of this review is to explore the use of CMR and IL-6 in ALVR in patients with STEMI, with the hope that future studies may explore multimodal image fusion, artificial intelligence-assisted analysis, and targeted therapies for IL-6 in order to optimise the management of ALVR after STEMI and to improve the long-term prognosis of patients.
[Keywords] adverse left ventricular remodeling;acute ST-segment elevation myocardial infarction;cardiac magnetic resonance;magnetic resonance imaging;myocardial strain;interleukins

LIU Suning   ZHANG Ziqian   YE Wenying   ZHOU Ying*  

Department of Imaging, Xuzhou Medical University Affiliated Hospital Of Lianyungang, Lianyungang 222000, China

Corresponding author: ZHOU Y, E-mail: zhouying261@163.com

Conflicts of interest   None.

Received  2024-12-11
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.026
Cite this article as: LIU S N, ZHANG Z Q, YE W Y, et al. Research progress on CMR andinterleukin-6 in predicting left ventricular adverse remodeling in patients with acute ST segment elevation myocardial infarction[J]. Chin J Magn Reson Imaging, 2025, 16(3): 156-161. DOI:10.12015/issn.1674-8034.2025.03.026.

[1]
THYGESEN K, ALPERT J S, JAFFE A S, et al. Fourth universal definition of myocardial infarction (2018)[J]. J Am Coll Cardiol, 2018, 72(18): 2231-2264. DOI: 10.1016/j.jacc.2018.08.1038.
[2]
WANG F F, LIANG F M, LI N, et al. Index of microcirculatory resistance is associated with left ventricular remodeling in patients with acute anterior ST-segment elevation myocardial infarction undergoing emergency primary percutaneous coronary intervention[J]. J Peking Univ Health Sci, 2024, 56(1): 150-156. DOI: 10.19723/j.issn.1671-167X.2024.01.023.
[3]
PU Q, YANG H Y, PENG P F, et al. Cardiac magnetic resonance evaluation of myocardial tissue characterization of different left ventricular phenotypes in patients with chronic kidney disease[J]. Chin J Magn Reson Imag, 2024, 15(8): 124-131. DOI: 10.12015/issn.1674-8034.2024.08.019.
[4]
WEIR-MCCALL J R, FITTON C A, GANDY S J, et al. Sex-specific associations between left ventricular remodeling at MRI and long-term cardiovascular risk[J/OL]. Radiology, 2024, 313(2): e232997 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/39499172/. DOI: 10.1148/radiol.232997.
[5]
RIDKER P M, RIFAI N, STAMPFER M J, et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men[J]. Circulation, 2000, 101(15): 1767-1772. DOI: 10.1161/01.cir.101.15.1767.
[6]
ZHENG W, GUO Q, GUO R F, et al. Predicting left ventricular remodeling post-MI through coronary physiological measurements based on computational fluid dynamics[J/OL]. iScience, 2024, 27(4): 109513 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/38600975/. DOI: 10.1016/j.isci.2024.109513.
[7]
VAN DER BIJL P, ABOU R, GOEDEMANS L, et al. Left ventricular post-infarct remodeling: implications for systolic function improvement and outcomes in the modern era[J]. JACC Heart Fail, 2020, 8(2): 131-140. DOI: 10.1016/j.jchf.2019.08.014.
[8]
BULLUCK H, GO Y Y, CRIMI G, et al. Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 26 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/28285594/. DOI: 10.1186/s12968-017-0343-9.
[9]
LEGALLOIS D, HODZIC A, ALEXANDRE J, et al. Definition of left ventricular remodelling following ST-elevation myocardial infarction: a systematic review of cardiac magnetic resonance studies in the past decade[J]. Heart Fail Rev, 2022, 27(1): 37-48. DOI: 10.1007/s10741-020-09975-3.
[10]
YANG Z X, TANG Y Y, SUN W Z, et al. Left atrial strain for prediction of left ventricular reverse remodeling after ST-segment elevation myocardial infarction by cardiac magnetic resonance feature tracking[J]. J Thorac Imaging, 2024, 39(6): 367-375. DOI: 10.1097/RTI.0000000000000795.
[11]
JIN S Q, WANG F, TIAN Z X, et al. Myocardial injury in peritoneal dialysis patients assessed by multiparametric MRI: relationship with left ventricular phenotypes[J]. J Magn Reson Imaging, 2024, 60(5): 1934-1947. DOI: 10.1002/jmri.29261.
[12]
TADIC M, SALA C, CARUGO S, et al. Myocardial strain and left ventricular geometry: a meta-analysis of echocardiographic studies in systemic hypertension[J]. J Hypertens, 2021, 39(11): 2297-2306. DOI: 10.1097/HJH.0000000000002911.
[13]
ARNAUTU D A, ANDOR M, BUZ B F, et al. Left ventricular remodeling and heart failure predictors in acute myocardial infarction patients with preserved left ventricular ejection fraction after successful percutaneous intervention in western Romania[J/OL]. Life, 2022, 12(10): 1636 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/36295071/. DOI: 10.3390/life12101636.
[14]
FRANTZ S, HUNDERTMARK M J, SCHULZ-MENGER J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies[J]. Eur Heart J, 2022, 43(27): 2549-2561. DOI: 10.1093/eurheartj/ehac223.
[15]
SHI K, MA M, YANG M X, et al. Increased oxygenation is associated with myocardial inflammation and adverse regional remodeling after acute ST-segment elevation myocardial infarction[J]. Eur Radiol, 2021, 31(12): 8956-8966. DOI: 10.1007/s00330-021-08032-3.
[16]
RAMAN S V, CHANDRASHEKHAR Y. Myocardial fibrosis: a viable imaging target in diastolic dysfunction and heart failure?[J]. JACC Cardiovasc Imaging, 2023, 16(6): 870-872. DOI: 10.1016/j.jcmg.2023.05.001.
[17]
ZHANG Y, ZHANG X N, WANG Y L, et al. Relationship between diffuse fibrosis assessed by CMR and depressed myocardial strain in different stages of heart failure[J/OL]. Eur J Radiol, 2023, 164: 110848 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/37156180/. DOI: 10.1016/j.ejrad.2023.110848.
[18]
ANTAR S A, ASHOUR N A, MARAWAN M E, et al. Fibrosis: types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation[J/OL]. Int J Mol Sci, 2023, 24(4): 4004 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/36835428/. DOI: 10.3390/ijms24044004.
[19]
JONG W M C, CATE H TEN, LINNENBANK A C, et al. Reduced acute myocardial ischemia-reperfusion injury in IL-6-deficient mice employing a closed-chest model[J]. Inflamm Res, 2016, 65(6): 489-499. DOI: 10.1007/s00011-016-0931-4.
[20]
HARTMAN M H T, VREESWIJK-BAUDOIN I, GROOT H E, et al. Inhibition of interleukin-6 receptor in a murine model of myocardial ischemia-reperfusion[J/OL]. PLoS One, 2016, 11(12): e0167195 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/27936014/. DOI: 10.1371/journal.pone.0167195.
[21]
SAWA Y, ICHIKAWA H, KAGISAKI K, et al. Interleukin-6 derived from hypoxic myocytes promotes neutrophil-mediated reperfusion injury in myocardium[J]. J Thorac Cardiovasc Surg, 1998, 116(3): 511-517. DOI: 10.1016/S0022-5223(98)70018-2.
[22]
RITSCHEL V N, SELJEFLOT I, ARNESEN H, et al. IL-6 signalling in patients with acute ST-elevation myocardial infarction[J/OL]. Results Immunol, 2013, 4: 8-13 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/24707455/. DOI: 10.1016/j.rinim.2013.11.002.
[23]
BROCH K, ANSTENSRUD A K, WOXHOLT S, et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol, 2021, 77(15): 1845-1855. DOI: 10.1016/j.jacc.2021.02.049.
[24]
TILLER C, REINDL M, HOLZKNECHT M, et al. Association of plasma interleukin-6 with infarct size, reperfusion injury, and adverse remodelling after ST-elevation myocardial infarction[J]. Eur Heart J Acute Cardiovasc Care, 2022, 11(2): 113-123. DOI: 10.1093/ehjacc/zuab110.
[25]
BENZ D C, GRÄNI C, ANTIOCHOS P, et al. Cardiac magnetic resonance biomarkers as surrogate endpoints in cardiovascular trials for myocardial diseases[J]. Eur Heart J, 2023, 44(45): 4738-4747. DOI: 10.1093/eurheartj/ehad510.
[26]
LIAN X Q, ZHANG H Y, ZHAO S H, et al. From medical image to clinical diagnosis and treatment: Advances in cardiovascular magnetic resonance in 2023[J]. Chin J Magn Reson Imag, 2024, 15(7): 184-190, 215. DOI: 10.12015/issn.1674-8034.2024.07.031.
[27]
RAJIAH P S, MOORE A, BRONCANO J, et al. Diastology with cardiac MRI: a practical guide[J/OL]. Radiographics, 2023, 43(9): e220144 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/37535462/. DOI: 10.1148/rg.220144.
[28]
YANG M M, LU J, ZHANG J Y, et al. The value of low-dose dynamic CT myocardial perfusion imaging for microvascular obstruction in patients with acute myocardial infarction[J]. J Pract Radiol, 2021, 37(2): 229-234. DOI: 10.3969/j.issn.1002-1671.2021.02.014.
[29]
GHUGRE N R. Editorial for "prognostic value of segmental strain after ST-elevation myocardial infarction: insights from the EARLY assessment of MYOcardial tissue characteristics by cardiac magnetic resonance (EARLY-MYO-CMR) study"[J]. J Magn Reson Imaging, 2024, 60(5): 2018-2019. DOI: 10.1002/jmri.29280.
[30]
CAMPBELL P, RUTTEN F H, LEE M M, et al. Heart failure with preserved ejection fraction: everything the clinician needs to know[J]. Lancet, 2024, 403(10431): 1083-1092. DOI: 10.1016/S0140-6736(23)02756-3.
[31]
MEMBERS: A F, MCDONAGH T A, METRA M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC[J]. Eur J Heart Fail, 2022, 24(1): 4-131. DOI: 10.1002/ejhf.2333.
[32]
REINDL M, STIERMAIER T, LECHNER I, et al. Cardiac magnetic resonance imaging improves prognostic stratification of patients with ST-elevation myocardial infarction and preserved ejection fraction[J/OL]. Eur Heart J Open, 2021, 1(3): oeab033 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/35919884/. DOI: 10.1093/ehjopen/oeab033.
[33]
CIKES M, SOLOMON S D. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure[J]. Eur Heart J, 2016, 37(21): 1642-1650. DOI: 10.1093/eurheartj/ehv510.
[34]
MARK P B, MANGION K, RANKIN A J, et al. Left ventricular dysfunction with preserved ejection fraction: the most common left ventricular disorder in chronic kidney disease patients[J]. Clin Kidney J, 2022, 15(12): 2186-2199. DOI: 10.1093/ckj/sfac146.
[35]
BULLUCK H, CARBERRY J, CARRICK D, et al. A noncontrast CMR risk score for long-term risk stratification in reperfused ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Imaging, 2022, 15(3): 431-440. DOI: 10.1016/j.jcmg.2021.08.006.
[36]
CHEN S, REDFORS B, CROWLEY A, et al. Relationship between primary percutaneous coronary intervention time of day, infarct size, microvascular obstruction and prognosis in ST-segment elevation myocardial infarction[J]. Coron Artery Dis, 2021, 32(4): 267-274. DOI: 10.1097/MCA.0000000000000990.
[37]
DEL BUONO M G, MONTONE R A, CAMILLI M, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 78(13): 1352-1371. DOI: 10.1016/j.jacc.2021.07.042.
[38]
MONTONE R A, CAMILLI M, DEL BUONO M G, et al. No-reflow: update on diagnosis, pathophysiology and therapeutic strategies[J/OL]. G Ital Cardiol, 2020, 21(6Suppl 1): 4S-14S [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/32469339/. DOI: 10.1714/3373.33487.
[39]
BIÈRE L, DONAL E, TERRIEN G, et al. Longitudinal strain is a marker of microvascular obstruction and infarct size in patients with acute ST-segment elevation myocardial infarction[J/OL]. PLoS One, 2014, 9(1): e86959 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/24489816/. DOI: 10.1371/journal.pone.0086959.
[40]
GALEA N, DACQUINO G M, AMMENDOLA R M, et al. Microvascular obstruction extent predicts major adverse cardiovascular events in patients with acute myocardial infarction and preserved ejection fraction[J]. Eur Radiol, 2019, 29(5): 2369-2377. DOI: 10.1007/s00330-018-5895-z.
[41]
FOO C Y, BONSU K O, NALLAMOTHU B K, et al. Coronary intervention door-to-balloon time and outcomes in ST-elevation myocardial infarction: a meta-analysis[J]. Heart, 2018, 104(16): 1362-1369. DOI: 10.1136/heartjnl-2017-312517.
[42]
WANG J L, MENG Y K, ZHANG C, et al. Delays in first medical contact to primary interventional therapy and left ventricular remodelling in ST-segment elevation myocardial infarction[J]. Ir J Med Sci, 2023, 192(5): 2143-2150. DOI: 10.1007/s11845-023-03283-z.
[43]
SHETYE A M, NAZIR S A, RAZVI N A, et al. Comparison of global myocardial strain assessed by cardiovascular magnetic resonance tagging and feature tracking to infarct size at predicting remodelling following STEMI[J/OL]. BMC Cardiovasc Disord, 2017, 17(1): 7 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/28056808/. DOI: 10.1186/s12872-016-0461-6.
[44]
WESTMAN P C, LIPINSKI M J, LUGER D, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction[J]. J Am Coll Cardiol, 2016, 67(17): 2050-2060. DOI: 10.1016/j.jacc.2016.01.073.
[45]
LU M J, ZHU L Y, PRASAD S K, et al. Magnetic resonance imaging mimicking pathology detects myocardial fibrosis: a door to hope for improving the whole course management[J]. Sci Bull, 2023, 68(9): 864-867. DOI: 10.1016/j.scib.2023.04.014.
[46]
LIU Y H, LI W, OUYANG L N, et al. Preliminary study of CMR tissue feature tracking technology on left ventricular function in patients with hypertrophic cardiomyopathy with ejection fraction preservation[J]. Chin J Magn Reson Imag, 2022, 13(1): 31-36. DOI: 10.12015/issn.1674-8034.2022.01.007.
[47]
REINDL M, TILLER C, HOLZKNECHT M, et al. Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction[J]. Clin Res Cardiol, 2021, 110(1): 61-71. DOI: 10.1007/s00392-020-01649-2.
[48]
HE J, ZHAO S H, LU M J. Cardiac magnetic resonance feature tracking technique and its progress[J]. Chin J Magn Reson Imag, 2020, 11(6): 469-473. DOI: 10.12015/issn.1674-8034.2020.06.018.
[49]
KAMMERLANDER A A. Feature tracking by cardiovascular magnetic resonance imaging: the new gold standard for systolic function?[J]. JACC Cardiovasc Imaging, 2020, 13(4): 948-950. DOI: 10.1016/j.jcmg.2019.11.015.
[50]
WANG J L, KONG Y, XI J N, et al. Recovery and prognostic values of myocardial strain in acute anterior and non-anterior wall myocardial infarction[J/OL]. PLoS One, 2023, 18(2): e0282027 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/36800349/. DOI: 10.1371/journal.pone.0282027.
[51]
SJÖGREN H, PAHLM U, ENGBLOM H, et al. Anterior STEMI associated with decreased strain in remote cardiac myocardium[J]. Int J Cardiovasc Imaging, 2022, 38(2): 375-387. DOI: 10.1007/s10554-021-02391-0.
[52]
DRISS A BEN, DRISS LEPAGE C BEN, SFAXI A, et al. Strain predicts left ventricular functional recovery after acute myocardial infarction with systolic dysfunction[J/OL]. Int J Cardiol, 2020, 307: 1-7 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/32093952/. DOI: 10.1016/j.ijcard.2020.02.039.
[53]
CALVIERI C, GALEA N, CILIA F, et al. Protective value of aspirin loading dose on left ventricular remodeling after ST-elevation myocardial infarction[J/OL]. Front Cardiovasc Med, 2022, 9: 786509 [2024-12-10]. https://pubmed.ncbi.nlm.nih.gov/35369291/. DOI: 10.3389/fcvm.2022.786509.
[54]
LIU K, MA Z Y, FU L, et al. Predictive value of global longitudinal strain measured by cardiac magnetic resonance imaging for left ventricular remodeling after acute ST-segment elevation myocardial infarction: a multi-centered prospective study[J]. J South Med Univ, 2024, 44(6): 1033-1039. DOI: 10.12122/j.issn.1673-4254.2024.06.03.
[55]
NAYYAR D, NGUYEN T, PATHAN F, et al. Cardiac magnetic resonance derived left atrial strain after ST-elevation myocardial infarction: an independent prognostic indicator[J]. Cardiovasc Diagn Ther, 2021, 11(2): 383-393. DOI: 10.21037/cdt-20-879.

PREV Research progress in the application of cardiac magnetic resonance imaging in dilated cardiomyopathy
NEXT Research progress of quantitative magnetic resonance magnetic sensitivity mapping in cardiovascular system
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn