Share:
Share this content in WeChat
X
Review
Research progress of quantitative magnetic resonance magnetic sensitivity mapping in cardiovascular system
LIU Wenjing  LUO Song 

Cite this article as: LIU W J, LUO S. Research progress of quantitative magnetic resonance magnetic sensitivity mapping in cardiovascular system[J]. Chin J Magn Reson Imaging, 2025, 16(3): 162-166. DOI:10.12015/issn.1674-8034.2025.03.027.


[Abstract] Quantitative susceptibility mapping (QSM) is an imaging technique based on gradient echo sequences to detect magnetic sensitive substances in the body and accurately quantify magnetic susceptibility values. With the development of QSM technology, QSM is increasingly being applied to the cardiovascular system, it can quantitatively detect blood oxygen content, myocardial iron content, and myocardial fibrosis, demonstrating significant clinical potential. This paper reviews the principle of QSM cardiac imaging, the factors affecting image quality, the main quantitative parameters and the clinical application of QSM in cardiovascular diseases. The aim is to provide relevant researchers with a more comprehensive understanding of this new imaging marker, improve awareness, and promote the broader adoption of this technology in clinical research and practice.
[Keywords] myocardial fibrosis;heart failure;magnetic resonance imaging;quantitative susceptibility mappiing;magnetic susceptibility;cardiovascular

LIU Wenjing   LUO Song*  

Department of Radiology, Geriatric Hospital of Nanjing Medical University, Nanjing 210009, China

Corresponding author: LUO S, E-mail: hnldls@163.com

Conflicts of interest   None.

Received  2024-10-31
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.027
Cite this article as: LIU W J, LUO S. Research progress of quantitative magnetic resonance magnetic sensitivity mapping in cardiovascular system[J]. Chin J Magn Reson Imaging, 2025, 16(3): 162-166. DOI:10.12015/issn.1674-8034.2025.03.027.

[1]
HURST J R, GALE C P, HURST J R, et al. MACE in COPD: addressing cardiopulmonary risk[J]. Lancet Respir Med, 2024, 12(5): 345-348. DOI: 10.1016/s2213-2600(24)00038-9.
[2]
NIKPARAST F, GANJI Z, DANESH DOUST M, et al. Brain pathological changes during neurodegenerative diseases and their identification methods: How does QSM perform in detecting this process?[J/OL]. Insights Imaging, 2022, 13(1): 74 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/35416533/. DOI: 10.1186/s13244-022-01207-6.
[3]
FANG Z R, CHEN Q Y, YE L, et al. Clinical value in predicting the microstructural alterations of substantia nigra in patients with early Parkinson's disease based on SyMRI relaxation quantitative analysis and QSM[J]. Chin J Magn Reson Imag, 2024, 15(8): 110-116, 138. DOI: 10.12015/issn.1674-8034.2024.08.017.
[4]
SUN T T, WU Q L, NI H Y. Imaging method and clinical application of quantitative susceptibility mapping[J]. Chin J Radiol, 2020, 54(9): 912-916. DOI: 10.3760/cma.j.cn112149-20190924-00513.
[5]
AIMO A, HUANG L, TYLER A, et al. Quantitative susceptibility mapping (QSM) of the cardiovascular system: challenges and perspectives[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 48 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/35978351/. DOI: 10.1186/s12968-022-00883-z.
[6]
ASSIMOPOULOS S, SHIE N, RAMANAN V, et al. Hemorrhage promotes chronic adverse remodeling in acute myocardial infarction: a T1, T2 and BOLD study[J/OL]. NMR Biomed, 2021, 34(1): e4404 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/32875632/. DOI: 10.1002/nbm.4404.
[7]
ALKHALIL M, BORLOTTI A, DE MARIA G L, et al. Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 3 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/31915031/. DOI: 10.1186/s12968-019-0593-9.
[8]
MAYR A, KLUG G, REINDL M, et al. Evolution of myocardial tissue injury: a CMR study over a decade after STEMI[J]. JACC Cardiovasc Imaging, 2022, 15(6): 1030-1042. DOI: 10.1016/j.jcmg.2022.02.010.
[9]
GUAN X M, CHEN Y Y, YANG H J, et al. Assessment of intramyocardial hemorrhage with dark-blood T2*-weighted cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 88 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/34261494/. DOI: 10.1186/s12968-021-00787-4.
[10]
BULLUCK H, CHOWDHURY N, LIM M X, et al. Feasibility to perform T2* mapping postcontrast administration in reperfused STEMI patients for the detection of intramyocardial hemorrhage[J]. J Magn Reson Imaging, 2020, 51(2): 644-645. DOI: 10.1002/jmri.26779.
[11]
WANG Y, LIU T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker[J]. Magn Reson Med, 2015, 73(1): 82-101. DOI: 10.1002/mrm.25358.
[12]
RAVANFAR P, LOI S M, SYEDA W T, et al. Systematic review: quantitative susceptibility mapping (QSM) of brain iron profile in neurodegenerative diseases[J/OL]. Front Neurosci, 2021, 15: 618435 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/33679303/. DOI: 10.3389/fnins.2021.618435.
[13]
VORA K P, KUMAR A, KRISHNAM M S, et al. Microvascular obstruction and intramyocardial hemorrhage in reperfused myocardial infarctions: pathophysiology and clinical insights from imaging[J]. JACC Cardiovasc Imaging, 2024, 17(7): 795-810. DOI: 10.1016/j.jcmg.2024.02.003.
[14]
ZHONG M M, CAO J J, AN Q, et al. Impact of AI-assisted compressed sensing on quality and phase value of nuclei of brain susceptibility weighted imaging[J]. Chin J Magn Reson Imag, 2023, 14(12): 91-97. DOI: 10.12015/issn.1674-8034.2023.12.015.
[15]
FU F Q, ZOU Y Y, KANG S R, et al. Quantitative susceptibility mapping of the substantia nigra subregions in diagnosis of Parkinson's disease[J]. Radiol Pract, 2024, 39(12): 1565-1571. DOI: 10.13609/j.cnki.1000-0313.2024.12.004.
[16]
CHEN K D, FANG X M. Research progress of quantitative magnetic susceptibility imaging in Parkinson's disease[J]. J Clin Radiol, 2024, 43(11): 2003-2006. DOI: 10.13437/j.cnki.jcr.2024.11.013.
[17]
HARADA T, KUDO K, FUJIMA N, et al. Quantitative susceptibility mapping: basic methods and clinical applications[J]. Radiographics, 2022, 42(4): 1161-1176. DOI: 10.1148/rg.210054.
[18]
MOOIWEER R, NEJI R, MCELROY S, et al. A fast Navigator (fastNAV) for prospective respiratory motion correction in first-pass myocardial perfusion imaging[J]. Magn Reson Med, 2021, 85(5): 2661-2671. DOI: 10.1002/mrm.28617.
[19]
TYLER A, HUANG L, KUNZE K, et al. Characterization of quantitative susceptibility mapping in the left ventricular myocardium[J/OL]. J Cardiovasc Magn Reson, 2024, 26(1): 101000 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/38237902/. DOI: 10.1016/j.jocmr.2024.101000.
[20]
BOEHM C, DIEFENBACH M N, MAKOWSKI M R, et al. Improved body quantitative susceptibility mapping by using a variable-layer single-Min-cut graph-cut for field-mapping[J]. Magn Reson Med, 2021, 85(3): 1697-1712. DOI: 10.1002/mrm.28515.
[21]
KAN H, NAKASHIMA M, TSUCHIYA T, et al. Water/fat separate reconstruction for body quantitative susceptibility mapping in MRI[J]. Radiol Phys Technol, 2025, 18(1): 320-328. DOI: 10.1007/s12194-024-00878-8.
[22]
SHARMA S D, FISCHER R, SCHOENNAGEL B P, et al. MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: Comparison with SQUID-based biomagnetic liver susceptometry[J]. Magn Reson Med, 2017, 78(1): 264-270. DOI: 10.1002/mrm.26358.
[23]
BACHRATA B, TRATTNIG S, ROBINSON S D. Quantitative susceptibility mapping of the head-and-neck using SMURF fat-water imaging with chemical shift and relaxation rate corrections[J]. Magn Reson Med, 2022, 87(3): 1461-1479. DOI: 10.1002/mrm.29069.
[24]
BOEHM C, SOLLMANN N, MEINEKE J, et al. Preconditioned water-fat total field inversion: Application to spine quantitative susceptibility mapping[J]. Magn Reson Med, 2022, 87(1): 417-430. DOI: 10.1002/mrm.28903.
[25]
XIONG C C. Quantitative susceptibility imaging analysis and susceptibility tensor imaging research under different field strengths[D]. Xiamen: Xiamen University, 2020. DOI: 10.27424/d.cnki.gxmdu.2020.003578.
[26]
CONSENSUS ORGANIZATION COMMITTEE Q S M, BILGIC B, COSTAGLI M, et al. Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: a consensus of the ISMRM electro-magnetic tissue properties study group[J]. Magn Reson Med, 2024, 91(5): 1834-1862. DOI: 10.1002/mrm.30006.
[27]
WEN J Y, QIAO J H, TANG Y Y, et al. Cardiac magnetic resonance imaging detection of intramyocardial hemorrhage in patients with ST-elevated myocardial infarction: comparison between susceptibility-weighted imaging and T1/T2 mapping techniques[J]. Quant Imaging Med Surg, 2024, 14(1): 476-488. DOI: 10.21037/qims-23-591.
[28]
BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Trans Med Imag, 2018, 37(11): 2514-2525. DOI: 10.1109/TMI.2018.2837502.
[29]
WEN Y, WEINSAFT J W, NGUYEN T D, et al. Free breathing three-dimensional cardiac quantitative susceptibility mapping for differential cardiac chamber blood oxygenation-initial validation in patients with cardiovascular disease inclusive of direct comparison to invasive catheterization[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 70 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/31735165/. DOI: 10.1186/s12968-019-0579-7.
[30]
LI J H, VILLAR-CALLE P, CHIU C, et al. Spiral cardiac quantitative susceptibility mapping for differential cardiac chamber oxygenation: Initial validation in relation to invasive blood sampling[J]. Magn Reson Med, 2025, 93(5): 2029-2039. DOI: 10.1002/mrm.30393.
[31]
KALI A, COKIC I, TANG R, et al. Persistent microvascular obstruction after myocardial infarction culminates in the confluence of ferric iron oxide crystals, proinflammatory burden, and adverse remodeling[J/OL]. Circ Cardiovasc Imaging, 2016, 9(11): e004996 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/27903536/. DOI: 10.1161/CIRCIMAGING.115.004996.
[32]
COKIC I, CHAN S F, GUAN X M, et al. Intramyocardial hemorrhage drives fatty degeneration of infarcted myocardium[J/OL]. Nat Commun, 2022, 13(1): 6394 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/36302906/. DOI: 10.1038/s41467-022-33776-x.
[33]
HUANG Y H, GUAN X M, ZHANG X H, et al. Accurate intramyocardial hemorrhage assessment with fast, free-running, cardiac quantitative susceptibility mapping[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(6): e230376 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/39665631/. DOI: 10.1148/ryct.230376.
[34]
LI W, WU B, AVRAM A V, et al. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings[J]. Neuroimage, 2012, 59(3): 2088-2097. DOI: 10.1016/j.neuroimage.2011.10.038.
[35]
WILSON A J, SANDS G B, LEGRICE I J, et al. Myocardial mesostructure and mesofunction[J/OL]. Am J Physiol Heart Circ Physiol, 2022, 323(2): H257-H275 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/35657613/. DOI: 10.1152/ajpheart.00059.2022.
[36]
KHALIQUE Z, FERREIRA P F, SCOTT A D, et al. Diffusion tensor cardiovascular magnetic resonance imaging: a clinical perspective[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1235-1255. DOI: 10.1016/j.jcmg.2019.07.016.
[37]
DIBB R, QI Y, LIU C L. Magnetic susceptibility anisotropy of myocardium imaged by cardiovascular magnetic resonance reflects the anisotropy of myocardial filament α-helix polypeptide bonds[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 60 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/26177899/. DOI: 10.1186/s12968-015-0159-4.
[38]
RYABOV V V, VYSHLOV E V, MASLOV L N, et al. The role of microvascular obstruction and intra-myocardial hemorrhage in reperfusion cardiac injury. analysis of clinical data[J/OL]. Rev Cardiovasc Med, 2024, 25(3): 105 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/39076959/. DOI: 10.31083/j.rcm2503105.
[39]
YUAN Y, YANG Y R. Pathogenesis of microvascular obstruction and intramyocardial hemorrhage after acute myocardial infarction[J]. Adv Cardiovasc Dis, 2023, 44(9): 819-822. DOI: 10.16806/j.cnki.issn.1004-3934.2023.09.012.
[40]
WANG S Y, QIAN X L, WU Y L, et al. Correlation analyses of cardiomyocyte injury markers with cardiac function, infarct volume and reperfusion injury after ST segment elevation myocardial infarction[J]. Acad J Nav Med Univ, 2024, 45(6): 732-739. DOI: 10.16781/j.CN31-2187/R.20240140.
[41]
SAIKIRAN P, PRIYANKA. Effectiveness of QSM over R2* in assessment of Parkinson's disease - A systematic review[J]. Neurol India, 2020, 68(2): 278-281. DOI: 10.4103/0028-3886.284377.
[42]
MOON B F, IYER S K, JOSSELYN N J, et al. Magnetic susceptibility and R2* of myocardial reperfusion injury at 3T and 7T[J]. Magn Reson Med, 2022, 87(1): 323-336. DOI: 10.1002/mrm.28955.
[43]
MOON B F, IYER S K, HWUANG E, et al. Iron imaging in myocardial infarction reperfusion injury[J/OL]. Nat Commun, 2020, 11(1): 3273 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/32601301/. DOI: 10.1038/s41467-020-16923-0.
[44]
WANG H, CHAI K, DU M H, et al. Prevalence and incidence of heart failure among urban patients in China: a national population-based analysis[J/OL]. Circ Heart Fail, 2021, 14(10): e008406 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/34455858/. DOI: 10.1161/CIRCHEARTFAILURE.121.008406.
[45]
MARAGKOUDAKIS S, TZANAKIS I, MAMALOUKAKI M, et al. Oxygen venous saturation is associated with subclinical myocardial systolic dysfunction in patients with end-stage renal disease undergoing hemodialysis[J/OL]. Arch Med Sci Atheroscler Dis, 2024, 9: e94-e101 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/39086619/. DOI: 10.5114/amsad/188091.
[46]
SAVARESE G, VON HAEHLING S, BUTLER J, et al. Iron deficiency and cardiovascular disease[J]. Eur Heart J, 2023, 44(1): 14-27. DOI: 10.1093/eurheartj/ehac569.
[47]
WANG Y, SPINCEMAILLE P, LIU Z, et al. Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care[J]. J Magn Reson Imaging, 2017, 46(4): 951-971. DOI: 10.1002/jmri.25693.
[48]
TRIADYAKSA P, OUDKERK M, SIJENS P E. Cardiac T2 * mapping: Techniques and clinical applications[J]. J Magn Reson Imaging, 2020, 52(5): 1340-1351. DOI: 10.1002/jmri.27023.
[49]
PEREIRA G A R, FOPPA M, EIFER D A, et al. Myocardial iron content by T2 Star cardiac magnetic resonance and serum markers of iron metabolism in patients with heart failure[J/OL]. J Cardiovasc Med, 2022, 23(1): e33-e35 [2024-10-30]. https://pubmed.ncbi.nlm.nih.gov/34580252/. DOI: 10.2459/JCM.0000000000001263.
[50]
DIMOV A V, LI J, NGUYEN T D, et al. QSM throughout the body[J]. J Magn Reson Imaging, 2023, 57(6): 1621-1640. DOI: 10.1002/jmri.28624.
[51]
SABA L C, CAU R, MURGIA A, et al. Carotid plaque-RADS: a novel stroke risk classification system[J]. JACC Cardiovasc Imaging, 2024, 17(1): 62-75. DOI: 10.1016/j.jcmg.2023.09.005.
[52]
PAKIZER D, KOZEL J, TAFFÉ P, et al. Diagnostic accuracy of carotid plaque instability by noninvasive imaging: a systematic review and meta-analysis[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(10): 1325-1335. DOI: 10.1093/ehjci/jeae144.
[53]
BUSH M A, AHMAD R, JIN N, et al. Patient specific prospective respiratory motion correction for efficient, free-breathing cardiovascular MRI[J]. Magn Reson Med, 2019, 81(6): 3662-3674. DOI: 10.1002/mrm.27681.
[54]
RUETTEN P P R, CLUROE A D, USMAN A, et al. Simultaneous MRI water-fat separation and quantitative susceptibility mapping of carotid artery plaque pre- and post-ultrasmall superparamagnetic iron oxide-uptake[J]. Magn Reson Med, 2020, 84(2): 686-697. DOI: 10.1002/mrm.28151.

PREV Research progress on CMR andinterleukin-6 in predicting left ventricular adverse remodeling in patients with acute ST segment elevation myocardial infarction
NEXT Current status of magnetic resonance imaging in connective tissue disease-associated interstitial lung disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn