Share:
Share this content in WeChat
X
Review
Advances in multimodal imaging for diagnosis and treatment of breast ductal carcinoma in situ
LI Yuanfei  ZHAO Siqi  WU Yueqi  ZHANG Moyun  ZHANG Lina  SHI Chang 

Cite this article as: LI Y F, ZHAO S Q, WU Y Q, et al. Advances in multimodal imaging for diagnosis and treatment of breast ductal carcinoma in situ[J]. Chin J Magn Reson Imaging, 2025, 16(3): 173-177. DOI:10.12015/issn.1674-8034.2025.03.029.


[Abstract] Ductal carcinoma in situ (DCIS), also referred to as stage zero breast cancer, is a malignant proliferation of non-invasive epithelial cells confined to the duct-lobular system, which may develop into invasive carcinoma. Risk stratification of DCIS is essential for the realization of precision medicine, and the imaging characteristics play a crucial role in screening and individualized treatment. This article systematically summarizes the applications and advancements in clinicopathological feature, multimodal imaging characteristics and artificial intelligence (AI) of DCIS in recent years. Its goal is to empower the understanding about DCIS and provide theoretical basis for early diagnosis, ultimately optimizing the project of personalized treatment and individualized risk assessment.
[Keywords] ductal carcinoma in situ;radiomics;risk stratification;magnetic resonance imaging;breast conserving surgery

LI Yuanfei1   ZHAO Siqi1   WU Yueqi1   ZHANG Moyun1   ZHANG Lina1*   SHI Chang2  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: ZHANG L N, E-mail: zln201045@163.com

Conflicts of interest   None.

Received  2025-01-31
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.029
Cite this article as: LI Y F, ZHAO S Q, WU Y Q, et al. Advances in multimodal imaging for diagnosis and treatment of breast ductal carcinoma in situ[J]. Chin J Magn Reson Imaging, 2025, 16(3): 173-177. DOI:10.12015/issn.1674-8034.2025.03.029.

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
CHEN S M, CAO Z, PRETTNER K, et al. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050[J]. JAMA Oncol, 2023, 9(4): 465-472. DOI: 10.1001/jamaoncol.2022.7826.
[3]
BUCHHEIT J T, SCHACHT D, KULKARNI S A. Update on management of ductal carcinoma in situ[J]. Clin Breast Cancer, 2024, 24(4): 292-300. DOI: 10.1016/j.clbc.2023.12.010.
[4]
KATAYAMA A, TOSS M S, PARKIN M, et al. Atypia in breast pathology: what pathologists need to know[J]. Pathology, 2022, 54(1): 20-31. DOI: 10.1016/j.pathol.2021.09.008.
[5]
WANG W N, ZHU W J, DU F, et al. The demographic features, clinicopathological characteristics and cancer-specific outcomes for patients with microinvasive breast cancer: a SEER database analysis[J]. Sci Rep, 2017, 7: 42045. DOI: 10.1038/srep42045.
[6]
ZHOU X P, YANG W, YIN Q Y, et al. Combining the X-ray and MRI characteristics with the clinical pathology to predict ductal carcinoma in situ with microinvasion of breast[J]. Chin J Magn Reson Imag, 2024, 15(5): 102-110, 118. DOI: 10.12015/issn.1674-8034.2024.05.017.
[7]
HUA B, YANG G, AN Y, et al. Clinical and imaging characteristics of contrast-enhanced mammography and MRI to distinguish microinvasive carcinoma from ductal carcinoma in situ[J]. Acad Radiol, 2024, 31(11): 4299-4308. DOI: 10.1016/j.acra.2024.04.041.
[8]
SHIN H J, CHOI W J, PARK S Y, et al. Prediction of underestimation using contrast-enhanced spectral mammography in patients diagnosed as ductal carcinoma in situ on preoperative core biopsy[J/OL]. Clin Breast Cancer, 2022, 22(3): e374-e386 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/34776365/. DOI: 10.1016/j.clbc.2021.10.004.
[9]
LI J K, WANG H F, HE Y, et al. Ultrasonographic features of ductal carcinoma in situ: analysis of 219 lesions[J]. Gland Surg, 2020, 9(6): 1945-1954. DOI: 10.21037/gs-20-428.
[10]
ZHANG H, ZHAO T, DING J Y, et al. Differentiation between invasive ductal carcinoma and ductal carcinoma in situ by combining intratumoral and peritumoral ultrasound radiomics[J/OL]. Biomed Eng Online, 2024, 23(1): 117 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/39574126/. DOI: 10.1186/s12938-024-01315-y.
[11]
HONG M P, FAN S J, YU Z X, et al. Evaluating upstaging in ductal carcinoma in situ using preoperative MRI-based radiomics[J]. J Magn Reson Imaging, 2023, 58(2): 454-463. DOI: 10.1002/jmri.28539.
[12]
KIM M Y, YOEN H, JI H, et al. Ultrafast MRI and T1 and T2 radiomics for predicting invasive components in ductal carcinoma in situ diagnosed with percutaneous needle biopsy[J]. Korean J Radiol, 2023, 24(12): 1190-1199. DOI: 10.3348/kjr.2023.0208.
[13]
MAGNONI F, BIANCHI B, CORSO G, et al. Ductal carcinoma in situ (DCIS) and microinvasive DCIS: role of surgery in early diagnosis of breast cancer[J/OL]. Healthcare, 2023, 11(9): 1324 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/37174866/. DOI: 10.3390/healthcare11091324.
[14]
WU Z J, LIN Q, WANG H B, et al. An MRI-based radiomics nomogram to distinguish ductal carcinoma in situ with microinvasion from ductal carcinoma in situ of breast cancer[J/OL]. Acad Radiol, 2023, 30(Suppl 2): S71-S81 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/37211478/. DOI: 10.1016/j.acra.2023.03.038.
[15]
BALAC N, TUNGATE R M, JEONG Y J, et al. Is palpable DCIS more aggressive than screen-detected DCIS?[J/OL]. Surg Open Sci, 2022, 11: 83-87 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/36589700/. DOI: 10.1016/j.sopen.2022.12.002.
[16]
BAE M S, BERNARD-DAVILA B, SUNG J S, et al. Preoperative breast MRI features associated with positive or close margins in breast-conserving surgery[J/OL]. Eur J Radiol, 2019, 117: 171-177 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/31307644/. DOI: 10.1016/j.ejrad.2019.06.011.
[17]
DHAK S, BALISKI C, BAKOS B. Factors influencing suboptimal pathologic margins and re-excision following breast conserving surgery for ductal carcinoma in situ[J]. Am J Surg, 2023, 225(5): 866-870. DOI: 10.1016/j.amjsurg.2023.02.025.
[18]
The Society of Breast Cancer China AntiCancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association(2024 edition)[J]. China Oncol, 2023, 33(12): 1092-1187. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
[19]
LEE S A, LEE Y, RYU H S, et al. Diffusion-weighted breast MRI in prediction of upstaging in women with biopsy-proven ductal carcinoma in situ[J/OL]. Radiology, 2022, 305(1): E60 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/36154288/. DOI: 10.1148/radiol.229018.
[20]
NICOSIA L, BOZZINI A C, PENCO S, et al. A model to predict upstaging to invasive carcinoma in patients preoperatively diagnosed with low-grade ductal carcinoma in situ of the breast[J/OL]. Cancers, 2022, 14(2): 370 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/35053533/. DOI: 10.3390/cancers14020370.
[21]
SCHMITZ R S J M, VAN DEN BELT-DUSEBOUT A W, CLEMENTS K, et al. Association of DCIS size and margin status with risk of developing breast cancer post-treatment: multinational, pooled cohort study[J/OL]. BMJ, 2023, 383: e076022 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/37903527/. DOI: 10.1136/bmj-2023-076022.
[22]
BARREAU B, DE MASCAREL I, FEUGA C, et al. Mammography of ductal carcinoma in situ of the breast: review of 909 cases with radiographic-pathologic correlations[J]. Eur J Radiol, 2005, 54(1): 55-61. DOI: 10.1016/j.ejrad.2004.11.019.
[23]
VAN LEEUWEN M M, DOYLE S, VAN DEN BELT-DUSEBOUT A W, et al. Clinicopathological and prognostic value of calcification morphology descriptors in ductal carcinoma in situ of the breast: a systematic review and meta-analysis[J/OL]. Insights Imaging, 2023, 14(1): 213 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38051355/. DOI: 10.1186/s13244-023-01529-z.
[24]
KIM G, MIKHAEL P G, OSENI T O, et al. Ductal carcinoma in situ on digital mammography versus digital breast tomosynthesis: rates and predictors of pathologic upgrade[J]. Eur Radiol, 2020, 30(11): 6089-6098. DOI: 10.1007/s00330-020-07021-2.
[25]
NISSAN N, COMSTOCK C E, SEVILIMEDU V, et al. Diagnostic accuracy of screening contrast-enhanced mammography for women with extremely dense breasts at increased risk of breast cancer[J/OL]. Radiology, 2024, 313(1): e232580 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/39352285/. DOI: 10.1148/radiol.232580.
[26]
CHEN Y S, ZHANG S D, ZHAO L F, et al. Risk stratification evaluation of suspicious malignant microcalcifications in BI-RADS category 4 of mammography[J]. Radiol Pract, 2023, 38(7): 905-909. DOI: 10.13609/j.cnki.1000-0313.2023.07.016.
[27]
LOHITVISATE W, KAEORAT C, KWANKUA A. Mammography of suspicious calcifications among ductal carcinoma in situ and benign breast disease[J/OL]. SA J Radiol, 2024, 28(1): 2852 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38840823/. DOI: 10.4102/sajr.v28i1.2852.
[28]
SHAABAN A M, HILTON B, CLEMENTS K, et al. The presentation, management and outcome of patients with ductal carcinoma in situ (DCIS) with microinvasion (invasion ≤1 mm in size)-results from the UK Sloane Project[J]. Br J Cancer, 2022, 127(12): 2125-2132. DOI: 10.1038/s41416-022-01983-4.
[29]
AVDAN ASLAN A, GÜLTEKIN S, ESENDAĞLI YILMAZ G, et al. Is there any association between mammographic features of microcalcifications and breast cancer subtypes in ductal carcinoma in situ?[J]. Acad Radiol, 2021, 28(7): 963-968. DOI: 10.1016/j.acra.2020.05.032.
[30]
LEE S E, KIM G R, HAN K, et al. US, mammography, and histopathologic evaluation to identify low nuclear grade ductal carcinoma in situ[J/OL]. Radiology, 2022, 303(3): E42 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/35604844/. DOI: 10.1148/radiol.229011.
[31]
SIDERIS S N, FALKNER N, PORTER G. The imaging appearances of non-calcified ductal carcinoma in situ: a pictorial essay[J]. J Med Imaging Radiat Oncol, 2023, 67(6): 647-652. DOI: 10.1111/1754-9485.13558.
[32]
LEE W K, CHUNG J, CHA E S, et al. Digital breast tomosynthesis and breast ultrasound: Additional roles in dense breasts with category 0 at conventional digital mammography[J]. Eur J Radiol, 2016, 85(1): 291-296. DOI: 10.1016/j.ejrad.2015.09.026.
[33]
SU X H, LIN Q, CUI C X, et al. Non-calcified ductal carcinoma in situ of the breast: comparison of diagnostic accuracy of digital breast tomosynthesis, digital mammography, and ultrasonography[J]. Breast Cancer, 2017, 24(4): 562-570. DOI: 10.1007/s12282-016-0739-7.
[34]
CHEN Y L, GAO Y, CHANG C, et al. Ultrasound shear wave elastography of breast lesions: correlation of anisotropy with clinical and histopathological findings[J/OL]. Cancer Imaging, 2018, 18(1): 11 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/29622044/. DOI: 10.1186/s40644-018-0144-x.
[35]
KOMARLA R, GILLILAND L, PIRANER M, et al. Imaging and pathologic features of non-calcified ductal carcinoma in situ: can sonography predict upgrade?[J/OL]. Br J Radiol, 2022, 95(1130): 20211013 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/34870448/. DOI: 10.1259/bjr.20211013.
[36]
COZZI A, DI LEO G, HOUSSAMI N, et al. Preoperative breast MRI positively impacts surgical outcomes of needle biopsy-diagnosed pure DCIS: a patient-matched analysis from the MIPA study[J]. Eur Radiol, 2024, 34(6): 3970-3980. DOI: 10.1007/s00330-023-10409-5.
[37]
JAVID S H, KAZEROUNI A S, HIPPE D S, et al. Preoperative MRI to predict upstaging of DCIS to invasive cancer at surgery[J/OL]. Ann Surg Oncol, 2025 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/39873851/. DOI: 10.1245/s10434-024-16837-x.
[38]
STRIGEL R M, BURNSIDE E S, ELEZABY M, et al. Utility of BI-RADS assessment category 4 subdivisions for screening breast MRI[J]. AJR Am J Roentgenol, 2017, 208(6): 1392-1399. DOI: 10.2214/AJR.16.16730.
[39]
CHOU S S, ROMANOFF J, LEHMAN C D, et al. Preoperative breast MRI for newly diagnosed ductal carcinoma in situ: imaging features and performance in a multicenter setting (ECOG-ACRIN E4112 trial)[J/OL]. Radiology, 2021, 301(1): E381 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/34543146/. DOI: 10.1148/radiol.2021219016.
[40]
RIZZO V, CICCIARELLI F, GALATI F, et al. Could breast multiparametric MRI discriminate between pure ductal carcinoma in situ and microinvasive carcinoma?[J]. Acta Radiol, 2024, 65(6): 565-574. DOI: 10.1177/02841851231225807.
[41]
HOU R, GRIMM L J, MAZUROWSKI M A, et al. Prediction of upstaging in ductal carcinoma in situ based on mammographic radiomic features[J]. Radiology, 2022, 303(1): 54-62. DOI: 10.1148/radiol.210407.
[42]
MAYFIELD J D, ATAYA D, ABDALAH M, et al. Presurgical upgrade prediction of DCIS to invasive ductal carcinoma using time-dependent deep learning models with DCE MRI[J/OL]. Radiol Artif Intell, 2024, 6(5): e230348 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38900042/. DOI: 10.1148/ryai.230348.
[43]
NIU Q H, LI H, DU L F, et al. Development of a Multi-Parametric ultrasonography nomogram for prediction of invasiveness in ductal carcinoma in situ[J/OL]. Eur J Radiol, 2024, 175: 111415 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38471320/. DOI: 10.1016/j.ejrad.2024.111415.
[44]
JIANG Y, CHENG Y J, GUO L, et al. A feasibility study of classification between breast carcinoma in situ and invasive carcinoma using intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI[J]. Chin J Radiol, 2022, 56(9): 976-981. DOI: 10.3760/cma.j.cn112149-20211222-01130.
[45]
LEE H J, PARK J H, NGUYEN A T, et al. Prediction of the histologic upgrade of ductal carcinoma in situ using a combined radiomics and machine learning approach based on breast dynamic contrast-enhanced magnetic resonance imaging[J/OL]. Front Oncol, 2022, 12: 1032809 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/36408141/. DOI: 10.3389/fonc.2022.1032809.
[46]
ZHU M, KUANG Y L, JIANG Z K, et al. Ultrasound deep learning radiomics and clinical machine learning models to predict low nuclear grade, ER, PR, and HER2 receptor status in pure ductal carcinoma in situ[J]. Gland Surg, 2024, 13(4): 512-527. DOI: 10.21037/gs-23-417.
[47]
XU H, LIU J K, CHEN Z, et al. Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer[J]. Eur Radiol, 2022, 32(7): 4845-4856. DOI: 10.1007/s00330-022-08539-3.
[48]
LUO H B, ZHAO S X, YANG W L, et al. Preoperative prediction of extensive intraductal component in invasive breast cancer based on intra- and peri-tumoral heterogeneity in high-resolution ultrafast DCE-MRI[J/OL]. Sci Rep, 2024, 14(1): 17396 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/39075278/. DOI: 10.1038/s41598-024-68601-6.
[49]
YOON G Y, CHOI W J, KIM H H, et al. Surgical outcomes for ductal carcinoma in situ: impact of preoperative MRI[J]. Radiology, 2020, 295(2): 296-303. DOI: 10.1148/radiol.2020191535.
[50]
ZHAO M R, MA W J, SONG X C, et al. Feasibility analysis of magnetic resonance imaging-based radiomics features for preoperative prediction of nuclear grading of ductal carcinoma in situ[J]. Gland Surg, 2023, 12(9): 1209-1223. DOI: 10.21037/gs-23-132.
[51]
SATAKE H, KINOSHITA F, ISHIGAKI S, et al. Predictive performance of radiomic features extracted from breast MR imaging in postoperative upgrading of ductal carcinoma in situ to invasive carcinoma[J/OL]. Magn Reson Med Sci, 2024 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38749758/. DOI: 10.2463/mrms.mp.2023-0168.
[52]
ALAEIKHANEHSHIR S, VOETS M M, VAN DUIJNHOVEN F H, et al. Application of deep learning on mammographies to discriminate between low and high-risk DCIS for patient participation in active surveillance trials[J/OL]. Cancer Imaging, 2024, 24(1): 48 [2025-01-12]. https://pubmed.ncbi.nlm.nih.gov/38576031/. DOI: 10.1186/s40644-024-00691-x.

PREV Current status of magnetic resonance imaging in connective tissue disease-associated interstitial lung disease
NEXT Advances in amide proton transfer imaging for breast cancer diagnosis and treatment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn