Share:
Share this content in WeChat
X
Review
Advances in amide proton transfer imaging for breast cancer diagnosis and treatment
WANG Shilong  TIAN Zhiwei  MAO Xijin 

Cite this article as: WANG S L, TIAN Z W, MAO X J. Advances in amide proton transfer imaging for breast cancer diagnosis and treatment[J]. Chin J Magn Reson Imaging, 2025, 16(3): 178-183, 195. DOI:10.12015/issn.1674-8034.2025.03.030.


[Abstract] Breast cancer, as the most prevalent malignancy in women, has seen its incidence and mortality rates steadily increasing. Imaging examinations play an indispensable role in disease diagnosis, disease monitoring, and prognostic evaluation. In recent years, amide proton transfer (APT) imaging, owing to its capability to provide insights into the biochemical characteristics of diseases at the molecular level, has found extensive applications in the diagnosis and treatment of breast cancer. This review summarizes the advances in the application of APT imaging in breast cancer diagnosis, correlation assessment with histopathological parameters, and therapeutic response evaluation, offering novel perspectives for molecular imaging in breast cancer.
[Keywords] magnetic resonance imaging;amide proton transfer imaging;breast cancer;chemical exchange saturation transfer imaging;molecular imaging

WANG Shilong1   TIAN Zhiwei1   MAO Xijin1, 2*  

1 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256600, China

2 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

Corresponding author: MAO X J, E-mail: mao2483000@163.com

Conflicts of interest   None.

Received  2024-12-29
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.030
Cite this article as: WANG S L, TIAN Z W, MAO X J. Advances in amide proton transfer imaging for breast cancer diagnosis and treatment[J]. Chin J Magn Reson Imaging, 2025, 16(3): 178-183, 195. DOI:10.12015/issn.1674-8034.2025.03.030.

[1]
IGBOKWE K K. Comparative examination of breast cancer burden in sub-Saharan Africa, 1990-2019: estimates from Global Burden of Disease 2019 study[J/OL]. BMJ Open, 2024, 14(3): e082492 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/38553071/. DOI: 10.1136/bmjopen-2023-082492.
[2]
COLES C E, EARL H, ANDERSON B O, et al. The lancet breast cancer commission[J]. Lancet, 2024, 403(10439): 1895-1950. DOI: 10.1016/S0140-6736(24)00747-5.
[3]
KIM J, HARPER A, MCCORMACK V, et al. Global patterns and trends in breast cancer incidence and mortality across 185 countries[J/OL]. Nat Med, 2025 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/39994475/. DOI: 10.1038/s41591-025-03502-3.
[4]
CHEN J, WU R, DIAO X H, et al. Diagnostic value of ultrasound-assisted mammography in dense breast screening[J]. Oncoradiology, 2024, 33(1): 49-56. DOI: 10.19732/j.cnki.2096-6210.2024.01.007.
[5]
DING W, WU S T, LAI X Q, et al. Diagnostic value of molybdenum target, ultrasound, and MRI in breast disease[J]. Chin J CT MRI, 2022, 20(2): 81-83. DOI: 10.3969/j.issn.1672-5131.2022.02.027.
[6]
NIE T T, FENG M W, YANG K, et al. Correlation between dynamic contrast-enhanced MRI characteristics and apparent diffusion coefficient with Ki-67-positive expression in non-mass enhancement of breast cancer[J/OL]. Sci Rep, 2023, 13(1): 21451 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/38052920/. DOI: 10.1038/s41598-023-48445-2.
[7]
KANG H S, KIM J Y, KIM J J, et al. Diffusion kurtosis MR imaging of invasive breast cancer: correlations with prognostic factors and molecular subtypes[J]. J Magn Reson Imaging, 2022, 56(1): 110-120. DOI: 10.1002/jmri.27999.
[8]
ZHANG J, ZHENG Y R, LI L, et al. Combination of IVIM with DCE-MRI for diagnostic and prognostic evaluation of breast cancer[J/OL]. Magn Reson Imaging, 2024, 113: 110204 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/38971263/. DOI: 10.1016/j.mri.2024.07.003.
[9]
YU T, LI L, SHI J F, et al. Predicting histopathological types and molecular subtype of breast tumors: a comparative study using amide proton transfer-weighted imaging, intravoxel incoherent motion and diffusion kurtosis imaging[J/OL]. Magn Reson Imaging, 2024, 105: 37-45 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/37890802/. DOI: 10.1016/j.mri.2023.10.010.
[10]
KRIKKEN E, VAN DER KEMP W J M, KHLEBNIKOV V, et al. Contradiction between amide-CEST signal and pH in breast cancer explained with metabolic MRI[J/OL]. NMR Biomed, 2019, 32(8): e4110 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/31136039/. DOI: 10.1002/nbm.4110.
[11]
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[12]
ZHANG H W, LIU X L, ZHANG H B, et al. Differentiation of meningiomas and gliomas by amide proton transfer imaging: a preliminary study of brain tumour infiltration[J/OL]. Front Oncol, 2022, 12: 886968 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/35646626/. DOI: 10.3389/fonc.2022.886968.
[13]
TOGAO O, YOSHIURA T, KEUPP J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448. DOI: 10.1093/neuonc/not158.
[14]
LIU J, LI C, CHEN Y S, et al. Diagnostic performance of multiparametric MRI in the evaluation of treatment response in glioma patients at 3T[J]. J Magn Reson Imaging, 2020, 51(4): 1154-1161. DOI: 10.1002/jmri.26900.
[15]
WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
[16]
LIU N. J Pract Med Imag, 2020, 21(1): 50-52. DOI: 10.16106/j.cnki.cn14-1281/r.2020.01.019.
[17]
ZU Z L. Towards the complex dependence of MTRasym on T1w in amide proton transfer (APT) imaging[J/OL]. NMR Biomed, 2018, 31(7): e3934 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/29806717/. DOI: 10.1002/nbm.3934.
[18]
ZHOU S H, WANG X J, CHENG S J, et al. Study on the correlation between multi-parameter MRI and pathology in the tumor body and peritumoral area of breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(3): 72-80. DOI: 10.12015/issn.1674-8034.2023.03.013.
[19]
KAMITANI T, SAGIYAMA K, YAMASAKI Y, et al. Amide proton transfer (APT) imaging of breast cancers and its correlation with biological status[J/OL]. Clin Imaging, 2023, 96: 38-43 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/36773531/. DOI: 10.1016/j.clinimag.2023.02.002.
[20]
WEN J, WANG M, XIANG L, et al. Preliminary study on the application value of 3.0 T magnetic resonance amide proton transfer(APT) imaging in breast diseases[J]. Chin J Magn Reson Imag, 2021, 12(12): 67-70. DOI: 10.12015/issn.1674-8034.2021.12.013.
[21]
ZHANG N, KANG J Y, WANG H L, et al. Differentiation of fibroadenomas versus malignant breast tumors utilizing three-dimensional amide proton transfer weighted magnetic resonance imaging[J/OL]. Clin Imaging, 2022, 81: 15-23 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/34597999/. DOI: 10.1016/j.clinimag.2021.09.002.
[22]
WANG X J, WANG J, LIU W L, et al. Amide proton transfer-weighted imaging and diffusion weighted imaging in differential diagnosis of benign and malignant breast lesions[J]. Chin J Med Imag Technol, 2020, 36(12): 1820-1824. DOI: 10.13929/j.issn.1003-3289.2020.12.013.
[23]
ZHAO A, WU X Y, FU T, et al. Value of DWI, DCE and APT imaging in identifying benign and malignant breast lesions[J]. China Med Devices, 2024, 39(6): 124-130, 155. DOI: 10.3969/j.issn.1674-1633.2024.06.020.
[24]
LI Y, ZHANG Y, TIAN L, et al. 3D amide proton transfer-weighted imaging may be useful for diagnosing early-stage breast cancer: a prospective monocentric study[J/OL]. Eur Radiol Exp, 2024, 8(1): 41 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/38584248/. DOI: 10.1186/s41747-024-00439-z.
[25]
MENG N, WANG X J, SUN J, et al. Comparative study of amide proton transfer-weighted imaging and intravoxel incoherent motion imaging in breast cancer diagnosis and evaluation[J]. J Magn Reson Imaging, 2020, 52(4): 1175-1186. DOI: 10.1002/jmri.27190.
[26]
WANG R H, ZHANG Y, CHENG J L, et al. Enhanced masses on contrast-enhanced breast: differentiation using A combination of 3D amide proton transfer weighted imaging and dynamic contrast-enhanced MRI[J]. J Clin Radiol, 2022, 41(3): 454-459. DOI: 10.13437/j.cnki.jcr.2022.03.032.
[27]
ZHOU S T, YANG C N, CHEN M H, et al. The value of differential diagnosis of benign and malignant breast tumors with MR DCE, DWI and APT sequences[J]. J Mod Oncol, 2024, 32(11): 2064-2068. DOI: 0.3969/j.issn.1672-4992.2024.11.020.
[28]
WALKER D T, DAVENPORT M S, MCGRATH T A, et al. Breakthrough hypersensitivity reactions to gadolinium-based contrast agents and strategies to decrease subsequent reaction rates: a systematic review and meta-analysis[J]. Radiology, 2020, 296(2): 312-321. DOI: 10.1148/radiol.2020192855.
[29]
ALABOUSI M, DAVENPORT M S. Use of intravenous gadolinium-based contrast media in patients with kidney disease and the risk of nephrogenic systemic fibrosis: Radiology in training[J]. Radiology, 2021, 300(2): 279-284. DOI: 10.1148/radiol.2021210044.
[30]
BHARGAVA V, SINGH K, MEENA P, et al. Nephrogenic systemic fibrosis: a frivolous entity[J]. World J Nephrol, 2021, 10(3): 29-36. DOI: 10.5527/wjn.v10.i3.29.
[31]
TWEEDLE M F. Gadolinium retention in human brain, bone, and skin[J]. Radiology, 2021, 300(3): 570-571. DOI: 10.1148/radiol.2021210957.
[32]
LI K, DENG X Y, WANG F, et al. The value of amide proton transfer imaging and diffusion weighted imaging in the diagnosis of invasive breast cancer[J]. J Mod Oncol, 2024, 32(22): 4334-4337. DOI: 10.3969/j.issn.1672-4992.2024.22.019.
[33]
ZHUANG L L, LIAN C, WANG Z H, et al. Breast-lesion assessment using amide proton transfer-weighted imaging and dynamic contrast-enhanced MR imaging[J]. Radiol Oncol, 2023, 57(4): 446-454. DOI: 10.2478/raon-2023-0051.
[34]
LIU Z, WEN J, WANG M, et al. Breast amide proton transfer imaging at 3 T: diagnostic performance and association with pathologic characteristics[J]. J Magn Reson Imaging, 2023, 57(3): 824-833. DOI: 10.1002/jmri.28335.
[35]
MENG N, WANG X J, SUN J, et al. A comparative study of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in the diagnosis and evaluation of breast cancer[J]. Eur Radiol, 2021, 31(3): 1707-1717. DOI: 10.1007/s00330-020-07169-x.
[36]
ZARIC O, FARR A, POBLADOR RODRIGUEZ E, et al. 7T CEST MRI: a potential imaging tool for the assessment of tumor grade and cell proliferation in breast cancer[J/OL]. Magn Reson Imaging, 2019, 59: 77-87 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/30880110/. DOI: 10.1016/j.mri.2019.03.004.
[37]
NIELSEN T O, LEUNG S C Y, RIMM D L, et al. Assessment of Ki67 in breast cancer: updated recommendations from the international Ki67 in breast cancer working group[J]. J Natl Cancer Inst, 2021, 113(7): 808-819. DOI: 10.1093/jnci/djaa201.
[38]
ZHANG S, SEILER S, WANG X Z, et al. CEST-Dixon for human breast lesion characterization at 3 T: a preliminary study[J]. Magn Reson Med, 2018, 80(3): 895-903. DOI: 10.1002/mrm.27079.
[39]
LOI L, ZIMMERMANN F, GOERKE S, et al. Relaxation-compensated CEST (chemical exchange saturation transfer) imaging in breast cancer diagnostics at 7T[J/OL]. Eur J Radiol, 2020, 129: 109068 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/32574936/. DOI: 10.1016/j.ejrad.2020.109068.
[40]
SHAO Z M, WU J, JIANG Z F, et al. Expert consensus on neoadjuvant treatment of breast cancer in China(2021 edition)[J]. China Oncol, 2022, 32(1): 80-89. DOI: 10.19401/j.cnki.1007-3639.2022.01.011.
[41]
ROMEO V, ACCARDO G, PERILLO T, et al. Assessment and prediction of response to neoadjuvant chemotherapy in breast cancer: a comparison of imaging modalities and future perspectives[J/OL]. Cancers, 2021, 13(14): 3521 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/34298733/. DOI: 10.3390/cancers13143521.
[42]
HAQUE W, VERMA V, HATCH S, et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy[J]. Breast Cancer Res Treat, 2018, 170(3): 559-567. DOI: 10.1007/s10549-018-4801-3.
[43]
HUANG M, O'SHAUGHNESSY J, ZHAO J, et al. Association of pathologic complete response with long-term survival outcomes in triple-negative breast cancer: a meta-analysis[J]. Cancer Res, 2020, 80(24): 5427-5434. DOI: 10.1158/0008-5472.CAN-20-1792.
[44]
TOSS A, VENTURELLI M, CIVALLERO M, et al. Predictive factors for relapse in triple-negative breast cancer patients without pathological complete response after neoadjuvant chemotherapy[J/OL]. Front Oncol, 2022, 12: 1016295 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/36531080/. DOI: 10.3389/fonc.2022.1016295.
[45]
GRADISHAR W, SALERNO K E. NCCN guidelines update: breast cancer[J]. J Natl Compr Canc Netw, 2016, 14(5 Suppl): 641-644. DOI: 10.6004/jnccn.2016.0181.
[46]
DULA A N, ARLINGHAUS L R, DORTCH R D, et al. Amide proton transfer imaging of the breast at 3 T: Establishing reproducibility and possible feasibility assessing chemotherapy response[J]. Magn Reson Med, 2013, 70(1): 216-224. DOI: 10.1002/mrm.24450.
[47]
KRIKKEN E, KHLEBNIKOV V, ZAISS M, et al. Amide chemical exchange saturation transfer at 7 T: a possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients[J/OL]. Breast Cancer Res, 2018, 20(1): 51 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/29898745/. DOI: 10.1186/s13058-018-0982-2.
[48]
ZHANG N, SONG Q W, LIANG H B, et al. Early prediction of pathological response to neoadjuvant chemotherapy of breast tumors: a comparative study using amide proton transfer-weighted, diffusion weighted and dynamic contrast enhanced MRI[J/OL]. Front Med, 2024, 11: 1295478 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/38298813/. DOI: 10.3389/fmed.2024.1295478.
[49]
ZHANG S, RAUCH G M, ADRADA B E, et al. Assessment of early response to neoadjuvant systemic therapy in triple-negative breast cancer using amide proton transfer-weighted chemical exchange saturation transfer MRI: a pilot study[J/OL]. Radiol Imaging Cancer, 2021, 3(5): e200155 [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/34477453/. DOI: 10.1148/rycan.2021200155.
[50]
JI G W. Research advances in breast cancer? Related lymphedema[J]. J Pract Med, 2022, 38(18): 2247-2252. DOI: 10.3969/j.issn.1006?5725.2022.18.001.
[51]
DISIPIO T, RYE S, NEWMAN B, et al. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis[J]. Lancet Oncol, 2013, 14(6): 500-515. DOI: 10.1016/S1470-2045(13)70076-7.
[52]
ANDERSON E A, ARMER J M. Factors impacting management of breast cancer-related lymphedema (BCRL) in hispanic/Latina breast cancer survivors: a literature review[J]. Hisp Health Care Int, 2021, 19(3): 190-202. DOI: 10.1177/1540415321990621.
[53]
GHAZALEH A A, HANDSCHIN T M, BUCKOWIECKI J, et al. Combining reconstructive and ablative surgical treatment of chronic breast cancer-related lymphedema (BCRL): safe and effective[J]. Breast Cancer Res Treat, 2023, 197(1): 83-92. DOI: 10.1007/s10549-022-06778-y.
[54]
ROCKSON S G. Lymphedema after breast cancer treatment[J]. N Engl J Med, 2018, 379(20): 1937-1944. DOI: 10.1056/NEJMcp1803290.
[55]
ZHANG X C, OLIVERI J M, PASKETT E D. Features, predictors, and treatment of breast cancer-related lymphedema[J]. Curr Breast Cancer Rep, 2020, 12(4): 244-254. DOI: 10.1007/s12609-020-00381-0.
[56]
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359. DOI: 10.6004/jnccn.2021.0012.
[57]
DONAHUE M J, DONAHUE P C M, RANE S, et al. Assessment of lymphatic impairment and interstitial protein accumulation in patients with breast cancer treatment-related lymphedema using CEST MRI[J]. Magn Reson Med, 2016, 75(1): 345-355. DOI: 10.1002/mrm.25649.
[58]
CRESCENZI R, DONAHUE P M C, MAHANY H, et al. CEST MRI quantification procedures for breast cancer treatment-related lymphedema therapy evaluation[J]. Magn Reson Med, 2020, 83(5): 1760-1773. DOI: 10.1002/mrm.28031.
[59]
STABINSKA J, MÜLLER-LUTZ A, WITTSACK H J, et al. Two point Dixon-based chemical exchange saturation transfer (CEST) MRI in renal transplant patients on 3 T[J/OL]. Magn Reson Imaging, 2022, 90: 61-69. [2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/35476934/ DOI: 10.1016/j.mri.2022.04.004.
[60]
LÉVY S, HERRLER J, LIEBERT A, et al. Clinically compatible subject-specific dynamic parallel transmit pulse design for homogeneous fat saturation and water-excitation at 7T: Proof-of-concept for CEST MRI of the brain[J]. Magn Reson Med, 2023, 89(1): 77-94. DOI: 10.1002/mrm.29412.

PREV Advances in multimodal imaging for diagnosis and treatment of breast ductal carcinoma in situ
NEXT Research progress of artificial intelligence in magnetic resonance diagnosis of breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn