Share:
Share this content in WeChat
X
Review
Research progress of artificial intelligence in magnetic resonance diagnosis of breast cancer
ZHANG Xueli  WANG Mengyao  YANG Zhihao  TANG Xiangbing  ZHAO Ming 

Cite this article as: ZHANG X L, WANG M Y, YANG Z H, et al. Research progress of artificial intelligence in magnetic resonance diagnosis of breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(3): 184-189. DOI:10.12015/issn.1674-8034.2025.03.031.


[Abstract] Globally, the incidence of breast cancer remains high and poses a significant threat to women's health. Early screening, diagnosis, and treatment can significantly improve the survival rate of breast cancer patients. In recent years, with the rapid development of big data and computer learning algorithms, artificial intelligence (AI) technology has been widely used in the field of medical imaging research, making disease diagnosis more efficient and accurate. Magnetic resonance imaging (MRI) has high resolution for soft tissues and is also sensitive in diagnosing breast lesions, and is widely used in clinical practice. A series of achievements have been made in the application of AI technology to process breast MRI data, which has improved the accuracy of breast cancer diagnosis to varying degrees. The purpose of this review is to summarize the latest application and research progress of AI technology in the diagnosis and treatment of breast cancer, so as to provide a valuable reference for clinicians to apply AI technology in the diagnosis and treatment of breast cancer, and help promote the further development of this field.
[Keywords] breast cancer;artificial intelligence;radiomics;magnetic resonance imaging;machine learning;deep learning

ZHANG Xueli   WANG Mengyao   YANG Zhihao   TANG Xiangbing   ZHAO Ming*  

Department of Magnetic Resonance Diagnosis, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China

Corresponding author: ZHAO M, E-mail: zmkyresearch@sina.com

Conflicts of interest   None.

Received  2024-11-11
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.031
Cite this article as: ZHANG X L, WANG M Y, YANG Z H, et al. Research progress of artificial intelligence in magnetic resonance diagnosis of breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(3): 184-189. DOI:10.12015/issn.1674-8034.2025.03.031.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[3]
TEICHGRAEBER D C, GUIRGUIS M S, WHITMAN G J. Breast cancer staging: updates in the AJCC cancer staging manual, 8th edition, and current challenges for radiologists, from the AJR special series on cancer staging[J]. AJR Am J Roentgenol, 2021, 217(2): 278-290. DOI: 10.2214/AJR.20.25223.
[4]
COZZI S, FINOCCHI GHERSI S, TAVA F, et al. Radiation-associated angiosarcoma of the breast: the state of the art of a rare and aggressive disease[J/OL]. J Pers Med, 2024, 14(8): 859 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/39202050/. DOI: 10.3390/jpm14080859.
[5]
SATAKE H, ISHIGAKI S, ITO R, et al. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence[J]. Radiol Med, 2022, 127(1): 39-56. DOI: 10.1007/s11547-021-01423-y.
[6]
LI J W, YOU C. Application status of artificial intelligence in breast image[J]. J Clin Radiol, 2024, 43(7): 1233-1236. DOI: 10.13437/j.cnki.jcr.2024.07.031.
[7]
VEDANTHAM S, SHAZEEB M S, CHIANG A L, et al. Artificial intelligence in breast X-ray imaging[J]. Semin Ultrasound CT MR, 2023, 44(1): 2-7. DOI: 10.1053/j.sult.2022.12.002.
[8]
LU F, ZHANG K J, WU L C, et al. Research advances in the application of machine learning in breast cancer diagnosis[J]. J Community Med, 2023, 21(24): 1315-1322. DOI: 10.19790/j.cnki.JCM.2023.24.11.
[9]
WANG Y X, TAN H N. Research and application progresses of artificial intelligence in breast cancer imaging[J]. Chin J Magn Reson Imag, 2023, 14(11): 177-182. DOI: 10.12015/issn.1674-8034.2023.11.030.
[10]
CHENG X, CHEN C M, XIA H H, et al. 3.0 T magnetic resonance functional imaging quantitative parameters for differential diagnosis of benign and malignant lesions of the breast[J]. Cancer Biother Radiopharm, 2021, 36(6): 448-455. DOI: 10.1089/cbr.2019.3040.
[11]
LI Y, YANG Z L, LV W Z, et al. Role of combined clinical-radiomics model based on contrast-enhanced MRI in predicting the malignancy of breast non-mass enhancements without an additional diffusion-weighted imaging sequence[J]. Quant Imaging Med Surg, 2023, 13(9): 5974-5985. DOI: 10.21037/qims-22-1199.
[12]
DAIMIEL NARANJO I, GIBBS P, REINER J S, et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis[J/OL]. Diagnostics, 2021, 11(6): 919 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/34063774/. DOI: 10.3390/diagnostics11060919.
[13]
ZHAO X, BAI J W, GUO Q, et al. Clinical applications of deep learning in breast MRI[J/OL]. Biochim Biophys Acta Rev Cancer, 2023, 1878(2): 188864 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/36822377/. DOI: 10.1016/j.bbcan.2023.188864.
[14]
LUO W B, ZHENG Y, LIU X, et al. Value analysis of deep learning model based on DCE-MRI images in the differential diagnosis of benign and malignant breast tumors[J]. Chin J Magn Reson Imag, 2024, 15(10): 22-29. DOI: 10.12015/issn.1674-8034.2024.10.005.
[15]
ZHOU J, LUO L Y, DOU Q, et al. Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images[J]. J Magn Reson Imaging, 2019, 50(4): 1144-1151. DOI: 10.1002/jmri.26721.
[16]
ZHOU J J, ZHANG Y, CHANG K T, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue[J]. J Magn Reson Imaging, 2020, 51(3): 798-809. DOI: 10.1002/jmri.26981.
[17]
ZHAO W R, XU M S, WANG S W, et al. Prediction of histological grade and ki-67 expression in breast cancer by DCE-MRI and DWI features[J]. Chin J Biomed Eng, 2019, 38(2): 176-183. DOI: 10.3969/j.issn.0258-8021.2019.02.006.
[18]
XIE S D, FAN M, XU M S, et al. Prediction of histological grade in invasive breast cancer based on T2-weighted MRI[J]. Chin J Biomed Eng, 2020, 39(3): 280-287. DOI: 10.3969/j.issn.0258-8021.2020.03.04.
[19]
DU X M, LI Y L, CAO S N, et al. The value of DCE-MRI and DWI radiomics features in predicting the pathological grading of invasive breast cancer[J]. J Clin Radiol, 2022, 41(9): 1641-1644. DOI: 10.13437/j.cnki.jcr.2022.09.002.
[20]
ABUNASSER B S, AL-HIEALY M R J, ZAQOUT I S, et al. Convolution neural network for breast cancer detection and classification using deep learning[J]. Asian Pac J Cancer Prev, 2023, 24(2): 531-544. DOI: 10.31557/APJCP.2023.24.2.531.
[21]
ZHENG X, LI Y C, PENG R C. The value of Muti-parametric MRI in different molecular subtypes of primary breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(5): 104-109. DOI: 10.12015/issn.1674—8034.2023.05.019.
[22]
ELSHAZLY A M, GEWIRTZ D A. An overview of resistance to Human epidermal growth factor receptor 2 (Her2) targeted therapies in breast cancer[J]. Cancer Drug Resist, 2022, 5(2): 472-486. DOI: 10.20517/cdr.2022.09.
[23]
XUE X M, GUO L, GUO C Y, et al. Challenges and improvements in HER2 scoring and histologic evaluation: insights from a national proficiency testing scheme for breast cancer diagnosis in China[J/OL]. Breast Cancer Res, 2024, 26(1): 128 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/39227982/. DOI: 10.1186/s13058-024-01884-9.
[24]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/31002322/. DOI: 10.1001/jamanetworkopen.2019.2561.
[25]
LEITHNER D, MAYERHOEFER M E, MARTINEZ D F, et al. Non-invasive assessment of breast cancer molecular subtypes with multiparametric magnetic resonance imaging radiomics[J/OL]. J Clin Med, 2020, 9(6): 1853 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/32545851/. DOI: 10.3390/jcm9061853.
[26]
WANG S M, SUN Y Q, LI R M, et al. Diagnostic performance of perilesional radiomics analysis of contrast-enhanced mammography for the differentiation of benign and malignant breast lesions[J]. Eur Radiol, 2022, 32(1): 639-649. DOI: 10.1007/s00330-021-08134-y.
[27]
FAN M, YUAN W, ZHAO W R, et al. Joint prediction of breast cancer histological grade and ki-67 expression level based on DCE-MRI and DWI radiomics[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1632-1642. DOI: 10.1109/JBHI.2019.2956351.
[28]
ZHANG C M, DING Z M, CHEN P, et al. Prediction of HER-2 expression in breast cancer patients based on DCE-MRI intratumor and peritumoral imaging combined with TIC typing and Ki-67[J]. Chin J Magn Reson Imag, 2023, 14(4): 68-75. DOI: 10.12015/issn.1674-8034.2023.04.012.
[29]
FANG C Y, ZHANG J T, LI J Z, et al. Clinical-radiomics nomogram for identifying HER2 status in patients with breast cancer: a multicenter study[J/OL]. Front Oncol, 2022, 12: 922185 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/36158700/. DOI: 10.3389/fonc.2022.922185.
[30]
LIU M H, ZHANG S, DU Y N, et al. Identification of Luminal A breast cancer by using deep learning analysis based on multi-modal images[J/OL]. Front Oncol, 2023, 13: 1243126 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/38044991/. DOI: 10.3389/fonc.2023.1243126.
[31]
WEIGELT B, PETERSE J L, VAN 'T VEER L J. Breast cancer metastasis: markers and models[J]. Nat Rev Cancer, 2005, 5(8): 591-602. DOI: 10.1038/nrc1670.
[32]
BRACKSTONE M, BALDASSARRE F G, PERERA F E, et al. Management of the axilla in early-stage breast cancer: Ontario health (cancer care Ontario) and ASCO guideline[J]. J Clin Oncol, 2021, 39(27): 3056-3082. DOI: 10.1200/JCO.21.00934.
[33]
TONELLOTTO F, BERGMANN A, DE SOUZA ABRAHÃO K, et al. Impact of number of positive lymph nodes and lymph node ratio on survival of women with node-positive breast cancer[J]. Eur J Breast Health, 2019, 15(2): 76-84. DOI: 10.5152/ejbh.2019.4414.
[34]
CATTELL R, YING J, LEI L, et al. Preoperative prediction of lymph node metastasis using deep learning-based features[J/OL]. Vis Comput Ind Biomed Art, 2022, 5(1): 8 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/35254557/. DOI: 10.1186/s42492-022-00104-5.
[35]
SAMIEI S, GRANZIER R W Y, IBRAHIM A, et al. Dedicated axillary MRI-based radiomics analysis for the prediction of axillary lymph node metastasis in breast cancer[J/OL]. Cancers, 2021, 13(4): 757 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/33673071/. DOI: 10.3390/cancers13040757.
[36]
TAN H N, GAN F W, WU Y P, et al. Preoperative prediction of axillary lymph node metastasis in breast carcinoma using radiomics features based on the fat-suppressed T2 sequence[J]. Acad Radiol, 2020, 27(9): 1217-1225. DOI: 10.1016/j.acra.2019.11.004.
[37]
TANG Y Q, CHEN L, QIAO Y T, et al. Radiomic signature based on dynamic contrast-enhanced MRI for evaluation of axillary lymph node metastasis in breast cancer[J/OL]. Comput Math Methods Med, 2022, 2022: 1507125 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/36035302/. DOI: 10.1155/2022/1507125.
[38]
ZHANG X D, LIU M H, REN W Q, et al. Predicting of axillary lymph node metastasis in invasive breast cancer using multiparametric MRI dataset based on CNN model[J/OL]. Front Oncol, 2022, 12: 1069733 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/36561533/. DOI: 10.3389/fonc.2022.1069733.
[39]
LI X, YANG L F, JIAO X. Comparison of traditional radiomics, deep learning radiomics and fusion methods for axillary lymph node metastasis prediction in breast cancer[J]. Acad Radiol, 2023, 30(7): 1281-1287. DOI: 10.1016/j.acra.2022.10.015.
[40]
ZHANG J Q, YIN W, YANG L, et al. Deep learning radiomics nomogram based on multiphase computed tomography for predicting axillary lymph node metastasis in breast cancer[J]. Mol Imaging Biol, 2024, 26(1): 90-100. DOI: 10.1007/s11307-023-01839-0.
[41]
CHEN Z H, OUYANG Q C, WANG Y S, et al. Real-world first-line treatment patterns and outcomes in hormone receptor-positive advanced breast cancer patients: a multicenter, retrospective study in China[J/OL]. Front Oncol, 2022, 12: 829693 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/35311126/. DOI: 10.3389/fonc.2022.829693.
[42]
LEE H B, HAN W, KIM S Y, et al. Prediction of pathologic complete response using image-guided biopsy after neoadjuvant chemotherapy in breast cancer patients selected based on MRI findings: a prospective feasibility trial[J/OL]. Breast Cancer Res Treat, 2020, 182(1): 97-105 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/32418044/. DOI: 10.1007/s10549-020-05678-3.
[43]
BASAVATIA A K, FIEDLER D A, RITTER J, et al. Comprehensive patient-specific intensity-modulated radiation therapy quality assurance comparing Mobius3D/FX to conventional methods of evaluation[J/OL]. Cureus, 2021, 13(5): e14910 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/34113520/. DOI: 10.7759/cureus.14910.
[44]
HUANG Y Q, HE L, LI Z H, et al. Coupling radiomics analysis of CT image with diversification of tumor ecosystem: a new insight to overall survival in stage I - III colorectal cancer[J]. Chin J Cancer Res, 2022, 34(1): 40-52. DOI: 10.21147/j.issn.1000-9604.2022.01.04.
[45]
ZHANG J, HUANG Y B, CHEN J H, et al. Potential of combination of DCE-MRI and DWI with serum CA125 and CA199 in evaluating effectiveness of neoadjuvant chemotherapy in breast cancer[J/OL]. World J Surg Oncol, 2021, 19(1): 284 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/34537053/. DOI: 10.1186/s12957-021-02398-w.
[46]
RONG Y B, XIANG D H, ZHU W F, et al. Deriving external forces via convolutional neural networks for biomedical image segmentation[J]. Biomed Opt Express, 2019, 10(8): 3800-3814. DOI: 10.1364/BOE.10.003800.
[47]
ZHOU Z J, ADRADA B E, CANDELARIA R P, et al. Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI[J/OL]. Sci Rep, 2023, 13(1): 1171 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/36670144/. DOI: 10.1038/s41598-023-27518-2.
[48]
ZHUANG X S, CHEN C, LIU Z Y, et al. Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy[J/OL]. Transl Oncol, 2020, 13(11): 100831 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/32759037/. DOI: 10.1016/j.tranon.2020.100831.
[49]
WANG J, GAO G, TIAN C, et al. Next-generation sequencing based deep learning model for prediction of HER2 status and response to HER2-targeted neoadjuvant chemotherapy[J/OL]. J Cancer Res Clin Oncol, 2025, 151(2): 72 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/39923208/. DOI: 10.1007/s00432-025-06105-0.
[50]
COPPOLA F, GIANNINI V, GABELLONI M, et al. Radiomics and magnetic resonance imaging of rectal cancer: from engineering to clinical practice[J/OL]. Diagnostics, 2021, 11(5): 756 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/33922483/. DOI: 10.3390/diagnostics11050756.
[51]
QU Y H, ZHU H T, CAO K, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method[J]. Thorac Cancer, 2020, 11(3): 651-658. DOI: 10.1111/1759-7714.13309.
[52]
CHOI J H, KIM H A, KIM W, et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning[J/OL]. Sci Rep, 2020, 10(1): 21149 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/33273490/. DOI: 10.1038/s41598-020-77875-5.
[53]
MASSAFRA R, COMES M C, BOVE S, et al. Robustness evaluation of a deep learning model on sagittal and axial breast DCE-MRIs to predict pathological complete response to neoadjuvant chemotherapy[J/OL]. J Pers Med, 2022, 12(6): 953 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/35743737/. DOI: 10.3390/jpm12060953.
[54]
JOO S, KO E S, KWON S, et al. Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer[J/OL]. Sci Rep, 2021, 11(1): 18800 [2024-11-10]. https://pubmed.ncbi.nlm.nih.gov/34552163/. DOI: 10.1038/s41598-021-98408-8.

PREV Advances in amide proton transfer imaging for breast cancer diagnosis and treatment
NEXT Advancements and applications of magnetic resonance elastography in chronic liver diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn