Share:
Share this content in WeChat
X
Review
Progress on the role of magnetic resonance imaging techniques in the staged diagnosis of hepatic fibrosis
BAO Yuanyuan  PAN Yiqi  MAI Xiaoli 

Cite this article as: BAO Y Y, PAN Y Q, MAI X L. Progress on the role of magnetic resonance imaging techniques in the staged diagnosis of hepatic fibrosis[J]. Chin J Magn Reson Imaging, 2025, 16(3): 196-200. DOI:10.12015/issn.1674-8034.2025.03.033.


[Abstract] Hepatic fibrosis (HF) is a reparative response of hepatocytes to chronic tissue injury and represents a critical stage in the progression of various liver diseases toward cirrhosis. Early HF is a reversible pathophysiological process, and timely, accurate diagnosis is essential for effective treatment and improved prognosis. Due to the limitations of liver biopsy in current detection methods and the inability to perform continuous examination, magnetic resonance imaging technology, as a non-invasive technique, plays an increasingly important role in the diagnosis of HF. This paper reviews the new applications of conventional diagnostic techniques such as magnetic resonance elastography (MRE), novel magnetic resonance imaging (MRI) techniques based on spin-lock phase, and blood oxygen level dependent (BOLD) functional MRI in the diagnosis of HF. It aims to provide a reference for future efforts to improve the early diagnostic capabilities of HF by combining multiple sequences and leveraging their respective advantages, and to offer more precise imaging support for the clinical diagnosis and treatment of HF.
[Keywords] liver fibrosis;cirrhosis;hepatic iron deposition;magnetic resonance imaging;staged diagnosis

BAO Yuanyuan1   PAN Yiqi2   MAI Xiaoli1, 2*  

1 Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China

2 Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China

Corresponding author: MAI X L, E-mail: maixl@nju.edu.cn

Conflicts of interest   None.

Received  2024-12-12
Accepted  2025-03-07
DOI: 10.12015/issn.1674-8034.2025.03.033
Cite this article as: BAO Y Y, PAN Y Q, MAI X L. Progress on the role of magnetic resonance imaging techniques in the staged diagnosis of hepatic fibrosis[J]. Chin J Magn Reson Imaging, 2025, 16(3): 196-200. DOI:10.12015/issn.1674-8034.2025.03.033.

[1]
ROEHLEN N, CROUCHET E, BAUMERT T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives[J/OL]. Cells, 2020, 9(4): 875 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7226751/pdf/cells-09-00875.pdf. DOI: 10.3390/cells9040875.
[2]
YANG X, LI Q, LIU W T, et al. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment[J]. Cell Mol Immunol, 2023, 20(6): 583-599. DOI: 10.1038/s41423-023-00983-5.
[3]
DI-IACOVO N, PIERONI S, PIOBBICO D, et al. Liver regeneration and immunity: a tale to tell[J/OL]. Int J Mol Sci, 2023, 24(2): 1176 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9864482/pdf/ijms-24-01176.pdf. DOI: 10.3390/ijms24021176.
[4]
CIARDULLO S, CANNISTRACI R, MURACA E, et al. Liver fibrosis, NT-ProBNP and mortality in patients with MASLD: A population-based cohort study[J]. Nutr Metab Cardiovasc Dis, 2024, 34(4): 963-971. DOI: 10.1016/j.numecd.2023.11.011.
[5]
AJMERA V, CEPIN S, TESFAI K, et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes[J]. J Hepatol, 2023, 78(3): 471-478. DOI: 10.1016/j.jhep.2022.11.010.
[6]
FOGLIA B, NOVO E, PROTOPAPA F, et al. Hypoxia, hypoxia-inducible factors and liver fibrosis[J/OL]. Cells, 2021, 10(7): 1764 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8305108/pdf/cells-10-01764.pdf. DOI: 10.3390/cells10071764.
[7]
LAI M, AFDHAL N H. Liver fibrosis determination[J]. Gastroenterol Clin North Am, 2019, 48(2): 281-289. DOI: 10.1016/j.gtc.2019.02.002.
[8]
XU X Y, WANG W S, ZHANG Q M, et al. Performance of common imaging techniques vs serum biomarkers in assessing fibrosis in patients with chronic hepatitis B: A systematic review and meta-analysis[J]. World J Clin Cases, 2019, 7(15): 2022-2037. DOI: 10.12998/wjcc.v7.i15.2022.
[9]
BUCKHOLZ A P, BROWN R S. Noninvasive fibrosis testing in chronic liver disease including caveats[J]. Clin Liver Dis, 2023, 27(1): 117-131. DOI: 10.1016/j.cld.2022.08.008.
[10]
ZUO Z B, CUI H Z, WANG M C, et al. Diagnostic of FibroTouch and six serological models in assessing the degree of liver fibrosis among patients with chronic hepatic disease: A single-center retrospective study[J/OL]. PLoS One, 2022, 17(7): e0270512 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9249238/pdf/pone.0270512.pdf. DOI: 10.1371/journal.pone.0270512.
[11]
FANG C, LIM A, SIDHU P S. Ultrasound-based liver elastography in the assessment of fibrosis[J]. Clin Radiol, 2020, 75(11): 822-831. DOI: 10.1016/j.crad.2020.01.005.
[12]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: Principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[13]
CUNHA G M, FAN B Y, NAVIN P J, et al. Interpretation, reporting, and clinical applications of liver MR elastography[J/OL]. Radiology, 2024, 310(3): e231220 [2024-12-09]. https://pubmed.ncbi.nlm.nih.gov/38470236/. DOI: 10.1148/radiol.231220.
[14]
PEPIN K M, WELLE C L, GUGLIELMO F F, et al. Magnetic resonance elastography of the liver: everything you need to know to get started[J]. Abdom Radiol, 2022, 47(1): 94-114. DOI: 10.1007/s00261-021-03324-0.
[15]
DUARTE-ROJO A, TAOULI B, LEUNG D H, et al. Imaging-based noninvasive liver disease assessment for staging liver fibrosis in chronic liver disease: A systematic review supporting the AASLD Practice Guideline[J]. Hepatology, 2025, 81(2): 725-748. DOI: 10.1097/HEP.0000000000000852.
[16]
LI J H, VENKATESH S K, YIN M. Advances in magnetic resonance elastography of liver[J]. Magn Reson Imaging Clin N Am, 2020, 28(3): 331-340. DOI: 10.1016/j.mric.2020.03.001.
[17]
KIM Y S, JANG Y N, SONG J S. Comparison of gradient-recalled echo and spin-echo echo-planar imaging MR elastography in staging liver fibrosis: a meta-analysis[J]. Eur Radiol, 2018, 28(4): 1709-1718. DOI: 10.1007/s00330-017-5149-5.
[18]
SGIER D, STOCKER D, JÜNGST C, et al. Feasibility and performance of spin-echo EPI MR elastography at 3 Tesla for staging hepatic fibrosis in the presence of hepatic iron overload[J]. Abdom Radiol, 2024, 49(11): 3871-3882. DOI: 10.1007/s00261-023-04160-0.
[19]
LIU J J, HUANG M Y, ZHANG Y, et al. Technical success and reliability of magnetic resonance elastography in patients with hepatic iron overload[J]. Acad Radiol, 2024, 31(4): 1326-1335. DOI: 10.1016/j.acra.2023.08.016.
[20]
WU L, SHEN Y, LI F. Non-invasive diagnosis of liver fibrosis: a review of current imaging modalities[J]. Gastroenterol Hepatol, 2020, 43(4): 211-221. DOI: 10.1016/j.gastrohep.2019.11.009.
[21]
WANG J Y, ZHOU X, YAO M R, et al. Comparison and optimization of b value combinations for diffusion-weighted imaging in discriminating hepatic fibrosis[J]. Abdom Radiol, 2024, 49(4): 1113-1121. DOI: 10.1007/s00261-023-04159-7.
[22]
JANG W, JO S, SONG J S, et al. Comparison of diffusion-weighted imaging and MR elastography in staging liver fibrosis: a meta-analysis[J]. Abdom Radiol, 2021, 46(8): 3889-3907. DOI: 10.1007/s00261-021-03055-2.
[23]
KROMREY M L, LE BIHAN D, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.
[24]
TAO Y Y, ZHOU Y, WANG R, et al. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases[J]. World J Clin Cases, 2020, 8(15): 3164-3176. DOI: 10.12998/wjcc.v8.i15.3164.
[25]
WANG Q, YU G H, QIU J F, et al. Application of intravoxel incoherent motion in clinical liver imaging: a literature review[J]. J Magn Reson Imaging, 2024, 60(2): 417-440. DOI: 10.1002/jmri.29086.
[26]
LI T, CHE-NORDIN N, WÁNG Y X J, et al. Intravoxel incoherent motion derived liver perfusion/diffusion readouts can be reliable biomarker for the detection of viral hepatitis B induced liver fibrosis[J]. Quant Imaging Med Surg, 2019, 9(3): 371-385. DOI: 10.21037/qims.2019.02.11.
[27]
YE Z, WEI Y, CHEN J, et al. Value of intravoxel incoherent motion in detecting and staging liver fibrosis: A meta-analysis[J]. World J Gastroenterol, 2020, 26(23): 3304-3317. DOI: 10.3748/wjg.v26.i23.3304.
[28]
JIANG Y L, LI J, ZHANG P F, et al. Staging liver fibrosis with various diffusion-weighted magnetic resonance imaging models[J]. World J Gastroenterol, 2024, 30(9): 1164-1176. DOI: 10.3748/wjg.v30.i9.1164.
[29]
MELONI A, CARNEVALE A, GAIO P, et al. Liver T1 and T2 mapping in a large cohort of healthy subjects: normal ranges and correlation with age and sex[J]. MAGMA, 2024, 37(1): 93-100. DOI: 10.1007/s10334-023-01135-6.
[30]
LUETKENS J A, KLEIN S, TRÄBER F, et al. Quantification of liver fibrosis at T1 and T2 mapping with extracellular volume fraction MRI: preclinical results[J]. Radiology, 2018, 288(3): 748-754. DOI: 10.1148/radiol.2018180051.
[31]
LU Y M, WANG Q F, ZHANG T T, et al. Staging liver fibrosis: comparison of native T1 mapping, T2 mapping, and T1ρ: an experimental study in rats with bile duct ligation and carbon tetrachloride at 11.7 T MRI[J]. J Magn Reson Imaging, 2022, 55(2): 507-517. DOI: 10.1002/jmri.27822.
[32]
WANG Q, LIU H F, ZHU Z H, et al. Feasibility of T1 mapping with histogram analysis for the diagnosis and staging of liver fibrosis: Preclinical results[J]. Magn Reson Imaging, 2021, 76: 79-86. DOI: 10.1016/j.mri.2020.11.006.
[33]
KUPCZYK P A, MESROPYAN N, ISAAK A, et al. Quantitative MRI of the liver: evaluation of extracellular volume fraction and other quantitative parameters in comparison to MR elastography for the assessment of hepatopathy[J]. Magn Reson Imaging, 2021, 77: 7-13. DOI: 10.1016/j.mri.2020.12.005.
[34]
BURGIO M D, SARTORIS R, BEAUFRERE A, et al. Liver surface nodularity on non-contrast MRI identifies advanced fibrosis in patients with NAFLD[J]. Eur Radiol, 2022, 32(3): 1781-1791. DOI: 10.1007/s00330-021-08261-6.
[35]
WYATT C R, BARBARA T M, GUIMARAES A R. T1ρ magnetic resonance fingerprinting[J/OL]. NMR Biomed, 2020, 33(5): e4284 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8818303/pdf/nihms-1570899.pdf. DOI: 10.1002/nbm.4284.
[36]
TAKAYAMA Y, NISHIE A, ISHIMATSU K, et al. Diagnostic potential of T1ρ and T2 relaxations in assessing the severity of liver fibrosis and necro-inflammation[J]. Magn Reson Imaging, 2022, 87: 104-112. DOI: 10.1016/j.mri.2022.01.002.
[37]
LI R K, REN X P, YAN F H, et al. Liver fibrosis detection and staging: a comparative study of T1ρ MR imaging and 2D real-time shear-wave elastography[J]. Abdom Radiol, 2018, 43(7): 1713-1722. DOI: 10.1007/s00261-017-1381-3.
[38]
GUO Y W, GUO T T, HUANG C, et al. Combining T1rho and advanced diffusion MRI for noninvasively staging liver fibrosis: an experimental study in rats[J]. Abdom Radiol, 2024, 49(6): 1881-1891. DOI: 10.1007/s00261-024-04327-3.
[39]
XIE S S, QI H X, LI Q, et al. Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: an experimental study in rats with carbon tetrachloride intoxication[J/OL]. BMC Gastroenterol, 2020, 20(1): 14 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6964054/pdf/12876_2020_Article_1161.pdf. DOI: 10.1186/s12876-020-1161-3.
[40]
SLED J G, PIKE G B. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI[J]. Magn Reson Med, 2001, 46(5): 923-931. DOI: 10.1002/mrm.1278.
[41]
KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7.
[42]
HOU J, WONG V W, JIANG B Y, et al. Macromolecular proton fraction mapping based on spin-lock magnetic resonance imaging[J]. Magn Reson Med, 2020, 84(6): 3157-3171. DOI: 10.1002/mrm.28362.
[43]
QIAN Y R, WONG V W, HOU J, et al. Inhomogeneous liver fibrosis distribution revealed by macromolecular proton fraction quantification based on spin-lock MRI[J]. Quant Imaging Med Surg, 2022, 12(8): 4341-4345. DOI: 10.21037/qims-22-302.
[44]
HOU J, WONG V W, QIAN Y R, et al. Detecting early-stage liver fibrosis using macromolecular proton fraction mapping based on spin-lock MRI: preliminary observations[J]. J Magn Reson Imaging, 2023, 57(2): 485-492. DOI: 10.1002/jmri.28308.
[45]
LEE D, LE T T, IM G H, et al. Whole-brain perfusion mapping in mice by dynamic BOLD MRI with transient hypoxia[J]. J Cereb Blood Flow Metab, 2022, 42(12): 2270-2286. DOI: 10.1177/0271678X221117008.
[46]
BIONDETTI E, CHO J, LEE H. Cerebral oxygen metabolism from MRI susceptibility[J/OL]. Neuroimage, 2023, 276: 120189 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10335841/pdf/nihms-1912411.pdf. DOI: 10.1016/j.neuroimage.2023.120189.
[47]
HUANG Y L, WEI P H, XU L Z, et al. Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter[J/OL]. Nat Commun, 2023, 14(1): 3414 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10256794/pdf/41467_2023_Article_39067.pdf. DOI: 10.1038/s41467-023-39067-3.
[48]
ZHAN Y F, WU Y H, CHEN J Q. Carbogen gas-challenge BOLD fMRI in assessment of liver hypoxia after portal microcapsules implantation[J/OL]. PLoS One, 2019, 14(11): e0225665 [2024-12-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6881018/pdf/pone.0225665.pdf. DOI: 10.1371/journal.pone.0225665.
[49]
LIU H F, WANG Q, DU Y N, et al. Whole-liver histogram analysis of blood oxygen level-dependent functional magnetic resonance imaging in evaluating hepatic fibrosis[J]. Ann Palliat Med, 2021, 10(3): 2567-2576. DOI: 10.21037/apm-20-1753.
[50]
ZOU L Q, LIU H F, DU Y N, et al. Effect of iron deposition on native T1 mapping and blood oxygen level dependent for the assessment of liver fibrosis in rabbits with carbon tetrachloride intoxication[J]. Acad Radiol, 2023, 30(5): 873-880. DOI: 10.1016/j.acra.2022.06.006.
[51]
DIMOV A V, LI J, NGUYEN T D, et al. QSM throughout the body[J]. J Magn Reson Imaging, 2023, 57(6): 1621-1640. DOI: 10.1002/jmri.28624.
[52]
HARADA T, KUDO K, FUJIMA N, et al. Quantitative susceptibility mapping: basic methods and clinical applications[J]. Radiographics, 2022, 42(4): 1161-1176. DOI: 10.1148/rg.210054.
[53]
VELIKINA J V, ZHAO R Y, BUELO C J, et al. Data adaptive regularization with reference tissue constraints for liver quantitative susceptibility mapping[J]. Magn Reson Med, 2023, 90(2): 385-399. DOI: 10.1002/mrm.29644.
[54]
LI J Q, LIN H M, LIU T, et al. Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration[J]. J Magn Reson Imaging, 2018, 48(4): 1069-1079. DOI: 10.1002/jmri.26019.
[55]
QU Z, YANG S H, XING F, et al. Magnetic resonance quantitative susceptibility mapping in the evaluation of hepatic fibrosis in chronic liver disease: a feasibility study[J]. Quant Imaging Med Surg, 2021, 11(4): 1170-1183. DOI: 10.21037/qims-20-720.

PREV Advancements and applications of magnetic resonance elastography in chronic liver diseases
NEXT Progress in the application of peritumoral radiomics in hepatocellular carcinoma research
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn