Share:
Share this content in WeChat
X
Review
Progress in the application of peritumoral radiomics in hepatocellular carcinoma research
WANG Zhongqian  FU Tianxu  WANG Zhenping  LUO Shishi 

Cite this article as: WANG Z Q, FU T X, WANG Z P, et al. Progress in the application of peritumoral radiomics in hepatocellular carcinoma research[J]. Chin J Magn Reson Imaging, 2025, 16(3): 201-204, 210. DOI:10.12015/issn.1674-8034.2025.03.034.


[Abstract] Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. In recent years, research has focused on early non-invasive diagnosis, personalized treatment, molecular markers, pathological grading, and prevention of recurrence. Radiomics, through high-throughput extraction and analysis of imaging features, provides information on tumor heterogeneity and has been widely applied in HCC research. Previous studies mostly concentrated on the tumor itself, but with the continuous deepening of research, the value of studying the peritumoral region has gradually been recognized. This article reviews the application of peritumoral radiomics in HCC, including its use in pathological grading, microvascular invasion (MVI), molecular markers, early recurrence, and non-surgical treatment efficacy evaluation. It outlines the current progress, existing challenges, and future research directions, offering new insights for the precise treatment decision-making in HCC.
[Keywords] hepatocellular carcinoma;peritumor;radiomics;magnetic resonance imaging;prognosis evaluation

WANG Zhongqian1   FU Tianxu1   WANG Zhenping2   LUO Shishi1*  

1 Department of Radiology, Hainan Affifiliated Hospital of Hainan Medical University (Hainan General Hospital), HaiKou 570311, China

2 Department of Radiology, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Haikou 570203, China

Corresponding author: LUO S S, E-mail: 273497988@qq.com

Conflicts of interest   None.

Received  2024-12-09
Accepted  2025-02-10
DOI: 10.12015/issn.1674-8034.2025.03.034
Cite this article as: WANG Z Q, FU T X, WANG Z P, et al. Progress in the application of peritumoral radiomics in hepatocellular carcinoma research[J]. Chin J Magn Reson Imaging, 2025, 16(3): 201-204, 210. DOI:10.12015/issn.1674-8034.2025.03.034.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
PRIOR O, MACARRO C, NAVARRO V, et al. Identification of precise 3D CT radiomics for habitat computation by machine learning in cancer[J/OL]. Radiol Artif Intell, 2024, 6(2): e230118 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/38294307/. DOI: 10.1148/ryai.230118.
[3]
DE VISSER K E, JOYCE J A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. DOI: 10.1016/j.ccell.2023.02.016.
[4]
PAVLOVIĆ N, CALITZ C, THANAPIROM K, et al. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma[J/OL]. eLife, 2020, 9: e55865 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/33103995/. DOI: 10.7554/eLife.55865.
[5]
JEONG J H, JANG H J, KWAK S, et al. Novel TGF-β1 inhibitor antagonizes TGF-β1-induced epithelial-mesenchymal transition in human A549 lung cancer cells[J]. J Cell Biochem, 2019, 120(1): 977-987. DOI: 10.1002/jcb.27460.
[6]
QUAN H, SHI L, CHEN J, et al. Research progress of tumor microenvironment in hepatocelluar carcinoma[J]. Anti Tumor Pharm, 2023, 13(2): 150-154. DOI: 10.3969/j.issn.2095-1264.2023.02.03.
[7]
INVERNIZZI F, IAVARONE M, ZAVAGLIA C, et al. Experience with early sorafenib treatment with mTOR inhibitors in hepatocellular carcinoma recurring after liver transplantation[J]. Transplantation, 2020, 104(3): 568-574. DOI: 10.1097/TP.0000000000002955.
[8]
WU X, DENG Z, ZHAO Q Q. Immunotherapy improves disease prognosis by affecting the tumor microenvironment: a bibliometric study[J/OL]. Front Immunol, 2022, 13: 967076 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/36275770/. DOI: 10.3389/fimmu.2022.967076.
[9]
DUAN Z X, ZHAO W, YI G F. Research progresses of radiomics and deep learning for predicting prognosis of hepatocellular carcinoma[J]. Chin J Interv Imag Ther, 2024, 21(5): 302-306. DOI: 10.13929/j.issn.1672-8475.2024.05.011.
[10]
WANG G Z, DING F E, CHEN K G, et al. CT-based radiomics nomogram to predict proliferative hepatocellular carcinoma and explore the tumor microenvironment[J/OL]. J Transl Med, 2024, 22(1): 683 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/39218938/. DOI: 10.1186/s12967-024-05393-3.
[11]
KANG W D, QIU X, LUO Y G, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis[J/OL]. J Transl Med, 2023, 21(1): 598 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37674169/. DOI: 10.1186/s12967-023-04437-4.
[12]
MAO Y F, WANG J C, ZHU Y, et al. Gd-EOB-DTPA-enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2022, 11(1): 13-24. DOI: 10.21037/hbsn-19-870.
[13]
LV K, CAO X, DU P, et al. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(20): 2176-2183. DOI: 10.3748/wjg.v28.i20.2176.
[14]
FENG Z C, LI H L, LIU Q Y, et al. CT radiomics to predict macrotrabecular-massive subtype and immune status in hepatocellular carcinoma[J/OL]. Radiology, 2023, 307(1): e221291 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/36511807/. DOI: 10.1148/radiol.221291.
[15]
JI G W, ZHU F P, XU Q, et al. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: a multi-institutional study[J]. Radiology, 2020, 294(3): 568-579. DOI: 10.1148/radiol.2020191470.
[16]
COURT C M, HARLANDER-LOCKE M P, MARKOVIC D, et al. Determination of hepatocellular carcinoma grade by needle biopsy is unreliable for liver transplant candidate selection[J]. Liver Transpl, 2017, 23(9): 1123-1132. DOI: 10.1002/lt.24811.
[17]
LIU H F, WANG M, WANG Q, et al. Multiparametric MRI-based intratumoral and peritumoral radiomics for predicting the pathological differentiation of hepatocellular carcinoma[J/OL]. Insights Imaging, 2024, 15(1): 97 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/38536542/. DOI: 10.1186/s13244-024-01623-w.
[18]
LEE S, KANG T W, SONG K D, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
[19]
LI J, SU X, XU X, et al. Preoperative prediction and risk assessment of microvascular invasion in hepatocellular carcinoma[J/OL]. Crit Rev Oncol Hematol, 2023, 190: 104107 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37633349/. DOI: 10.1016/j.critrevonc.2023.104107.
[20]
ZHANG J, SUN Z Q, WU Q, et al. The progress of radiomics based on the tumor and the peripheral tumor regions in the evaluation of microvascular invasion of hepatocellular carcinoma[J]. Chin J Radiol, 2023, 57(10): 1120-1123. DOI: 10.3760/cma.j.cn112149-20221209-00991.
[21]
LUO Z W, YU H Y, LIU H X, et al. The value of radiomics models based on hepatobiliary phase images of Gd-EOB-DTPA enhanced MRI in prediction of microvascular invasion classification in hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(4): 95-101, 114. DOI: 10.12015/issn.1674-8034.2023.04.016.
[22]
XIA T Y, ZHOU Z H, MENG X P, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J/OL]. Radiology, 2023, 307(4): e222729 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37097141/. DOI: 10.1148/radiol.222729.
[23]
ZHENG R Y, ZHANG X E, LIU B X, et al. Comparison of non-radiomics imaging features and radiomics models based on contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma within 5 cm[J]. Eur Radiol, 2023, 33(9): 6462-6472. DOI: 10.1007/s00330-023-09789-5.
[24]
DONG Y, ZHOU L, XIA W, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma: initial application of a radiomic algorithm based on grayscale ultrasound images[J/OL]. Front Oncol, 2020, 10: 353 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/32266138/. DOI: 10.3389/fonc.2020.00353.
[25]
ZHU Z, YU Y X, LU J, et al. Clinical application value of predicting microvascular invasion in hepatocellular carcinoma using intratumoral and peritumoral radiomics models: A multicenter study[J]. Chin J Magn Reson Imag, 2024, 15(8): 132-138. DOI: 10.12015/issn.1674-8034.2024.08.020.
[26]
BENNANI-BAITI B, PINKER K, ZIMMERMANN M, et al. Non-invasive assessment of hypoxia and neovascularization with MRI for identification of aggressive breast cancer[J/OL]. Cancers, 2020, 12(8): 2024 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/32721996/. DOI: 10.3390/cancers12082024.
[27]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[28]
FENG S T, JIA Y M, LIAO B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
[29]
ZHANG R, XU L, WEN X, et al. A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Quant Imaging Med Surg, 2019, 9(9): 1503-1515. DOI: 10.21037/qims.2019.09.07.
[30]
NEBBIA G, ZHANG Q, AREFAN D, et al. Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J]. J Digit Imaging, 2020, 33(6): 1376-1386. DOI: 10.1007/s10278-020-00353-x.
[31]
FU T X, LUO S S, WANG Z P. Imaging research progresses of cytokeratin 19(CK19)-positive hepatocellular carcinoma[J]. Chin J Med Imag Technol, 2024, 40(10): 1603-1606. DOI: 10.13929/j.issn.1003-3289.2024.10.030.
[32]
YAN Y, LIN X S, MING W Z, et al. Radiomic analysis based on Gd-EOB-DTPA enhanced MRI for the preoperative prediction of ki-67 expression in hepatocellular carcinoma[J]. Acad Radiol, 2024, 31(3): 859-869. DOI: 10.1016/j.acra.2023.07.019.
[33]
YANG J W, DONG X, JIN S Z, et al. Radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma[J]. Acad Radiol, 2025, 32(1): 146-156. DOI: 10.1016/j.acra.2024.07.007.
[34]
FAN Y F, YU Y X, WANG X M, et al. Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma[J/OL]. BMC Med Imaging, 2021, 21(1): 100 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/34130644/. DOI: 10.1186/s12880-021-00633-0.
[35]
QIAN H W, SHEN Z H, ZHOU D F, et al. Intratumoral and peritumoral radiomics model based on abdominal ultrasound for predicting Ki-67 expression in patients with hepatocellular cancer[J/OL]. Front Oncol, 2023, 13: 1209111 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37711208/. DOI: 10.3389/fonc.2023.1209111.
[36]
LIU K, DENNIS C, PRINCE D S, et al. Vessels that encapsulate tumour clusters vascular pattern in hepatocellular carcinoma[J/OL]. JHEP Rep, 2023, 5(8): 100792 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/37456680/. DOI: 10.1016/j.jhepr.2023.100792.
[37]
RENNE S L, WOO H Y, ALLEGRA S, et al. Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma[J]. Hepatology, 2020, 71(1): 183-195. DOI: 10.1002/hep.30814.
[38]
DONG X, YANG J W, ZHANG B H, et al. Deep learning radiomics model of dynamic contrast-enhanced MRI for evaluating vessels encapsulating tumor clusters and prognosis in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2024, 59(1): 108-119. DOI: 10.1002/jmri.28745.
[39]
YU Y X, FAN Y F, WANG X M, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(2): 959-970. DOI: 10.1007/s00330-021-08250-9.
[40]
YAMAMOTO M, KOBAYASHI T, HONMYO N, et al. Liver resection is associated with good outcomes for hepatocellular carcinoma patients beyond the Barcelona Clinic Liver Cancer criteria: A multicenter study with the Hiroshima Surgical study group of Clinical Oncology[J]. Surgery, 2022, 171(5): 1303-1310. DOI: 10.1016/j.surg.2021.09.009.
[41]
NEVOLA R, RUOCCO R, CRISCUOLO L, et al. Predictors of early and late hepatocellular carcinoma recurrence[J]. World J Gastroenterol, 2023, 29(8): 1243-1260. DOI: 10.3748/wjg.v29.i8.1243.
[42]
CHEN Y Y, LIU Z L, MO Y X, et al. Prediction of post-hepatectomy liver failure in patients with hepatocellular carcinoma based on radiomics using Gd-EOB-DTPA-enhanced MRI: the liver failure model[J/OL]. Front Oncol, 2021, 11: 605296 [2024-11-30]. https://pubmed.ncbi.nlm.nih.gov/33777748/. DOI: 10.3389/fonc.2021.605296.
[43]
KANG W D, CAO X M, LUO J W. Effect of multiple peritumoral regions of interest ranges based on computed tomography radiomics for the prediction of early recurrence of hepatocellular carcinoma after resection[J]. Quant Imaging Med Surg, 2023, 13(10): 6668-6682. DOI: 10.21037/qims-23-226.
[44]
KIM S, SHIN J, KIM D Y, et al. Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(13): 3847-3855. DOI: 10.1158/1078-0432.CCR-18-2861.
[45]
WANG J, ZENG C Q, TANG M Y, et al. Development of a nomogram based on diffusion weighted imaging of peritumoral liver tissue to predict local progression of recurrent hepatocellular carcinoma after hepatectomy[J]. Chin J Magn Reson Imag, 2024, 15(2): 63-70. DOI: 10.12015/issn.1674-8034.2024.02.009.
[46]
HAN G H, BERHANE S, TOYODA H, et al. Prediction of survival among patients receiving transarterial chemoembolization for hepatocellular carcinoma: A response-based approach[J]. Hepatology, 2020, 72(1): 198-212. DOI: 10.1002/hep.31022.
[47]
WANG D D, WANG H B, SUN Z Q, et al. The value of radiomics combined with deep learning based on preoperative CT images in predicting the curative effect of transarterial chemoembolization for hepatocellular carcinoma[J]. Chin J Radiol, 2024, 58(2): 209-215. DOI: 10.3760/cma.j.cn112149-20230612-00401.
[48]
SONG W L, YU X L, GUO D J, et al. MRI-based radiomics: associations with the recurrence-free survival of patients with hepatocellular carcinoma treated with conventional transcatheter arterial chemoembolization[J]. J Magn Reson Imaging, 2020, 52(2): 461-473. DOI: 10.1002/jmri.26977.
[49]
SHI Z X, LI C F, ZHAO L F, et al. Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2024, 23(4): 361-369. DOI: 10.1016/j.hbpd.2023.06.011.
[50]
CHEN M Y, CAO J S, HU J H, et al. Clinical-radiomic analysis for pretreatment prediction of objective response to first transarterial chemoembolization in hepatocellular carcinoma[J]. Liver Cancer, 2021, 10(1): 38-51. DOI: 10.1159/000512028.

PREV Progress on the role of magnetic resonance imaging techniques in the staged diagnosis of hepatic fibrosis
NEXT Research progress on radiomics and artificial intelligence for preoperative prediction of microvascular invasion in hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn