Share:
Share this content in WeChat
X
Review
Research progress on radiomics and artificial intelligence for preoperative prediction of microvascular invasion in hepatocellular carcinoma
LUO Xi  LIAO Fushun  HUANG Xiaoya  WEN Canping  PENG Shouyong  WU Zichen  YAO Hongyan  WANG Jun 

Cite this article as: LUO X, LIAO F S, HUANG X Y, et al. Research progress on radiomics and artificial intelligence for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(3): 205-210. DOI:10.12015/issn.1674-8034.2025.03.035.


[Abstract] Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system, characterized by a high mortality rate and poor prognosis. Microvascular invasion (MVI) typically refers to the observation of cancer cell clusters invading the lumen of blood vessels lined by endothelial cells under a microscope. MVI is a significant prognostic factor for HCC patients; therefore, it is crucial to predict MVI preoperatively in a non-invasive and efficient manner, as it holds important clinical value. With the rapid development of artificial intelligence technology, the integration of artificial intelligence with clinical and traditional imaging to construct comprehensive MVI prediction models can allow for precise risk assessment in HCC patients and assist physicians in formulating individualized treatment plans. This article primarily reviews the research progress on radiomics and artificial intelligence in the preoperative prediction of MVI in HCC from four aspects: computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET). The aim is to raise the reader's awareness and understanding of HCC, particularly early-stage HCC, and to provide valuable guidance for radiologists and clinicians in accurately assessing, making treatment decisions, and prognostic evaluations for HCC patients. Furthermore, it seeks to offer researchers a more comprehensive comparative perspective to help more patients benefit from clinical diagnosis and treatment.
[Keywords] hepatocellular carcinoma;microvascular invasion;radiomics;artificial intelligence;computed tomography;magnetic resonance imaging;ultrasound;positron emission tomography

LUO Xi1, 2   LIAO Fushun1, 3   HUANG Xiaoya1, 2   WEN Canping1, 2   PENG Shouyong1, 2   WU Zichen1   YAO Hongyan1   WANG Jun1, 2*  

1 The First Clinical Medical School of Gannan Medical University, Ganzhou 341000, China

2 Department of Medical Imaging, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China

3 Department of Ultrasound, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China

Corresponding author: WANG J, E-mail: Wangguoshou911@126.com

Conflicts of interest   None.

Received  2025-01-10
Accepted  2025-03-07
DOI: 10.12015/issn.1674-8034.2025.03.035
Cite this article as: LUO X, LIAO F S, HUANG X Y, et al. Research progress on radiomics and artificial intelligence for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(3): 205-210. DOI:10.12015/issn.1674-8034.2025.03.035.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Department of Medical Administration, National Health Commission of the People's Republic of China. Guideline for diagnosis and treatment of primary liver cancer(2024 edition)[J]. Chin J Magn Reson Imaging, 2024, 15(6): 1-18. DOI: 10.12015/issn.1674-8034.2024.06.001.
[3]
MOON A M, SINGAL A G, TAPPER E B. Contemporary epidemiology of chronic liver disease and cirrhosis[J]. Clin Gastroenterol Hepatol, 2020, 18(12): 2650-2666. DOI: 10.1016/j.cgh.2019.07.060.
[4]
YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
[5]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[6]
XIA Y, YANG T, WANG K. Chinese expert consensus on the preventation and management of recurrent hepatocellular carcinoma after hepatic resection (2020 edition)[J]. Chin J Pract Surg, 2021, 41(1): 20-30. DOI: 10.19538/j.cjps.issn1005-2208.2021.01.03.
[7]
XIONG Y L, CAO P, LEI X H, et al. Accurate prediction of microvascular invasion occurrence and effective prognostic estimation for patients with hepatocellular carcinoma after radical surgical treatment[J/OL]. World J Surg Oncol, 2022, 20(1): 328 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/36180867/. DOI: 10.1186/s12957-022-02792-y.
[8]
RODRÍGUEZ-PERÁLVAREZ M, LUONG T V, ANDREANA L, et al. A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability[J]. Ann Surg Oncol, 2013, 20(1): 325-339. DOI: 10.1245/s10434-012-2513-1.
[9]
JIANG Y Q, CAO S E, CAO S L, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833. DOI: 10.1007/s00432-020-03366-9.
[10]
FAMULARO S, PIARDI T, MOLFINO S, et al. Factors affecting local and intra hepatic distant recurrence after surgery for hcc: an alternative perspective on microvascular invasion and satellitosis-A western European multicentre study[J]. J Gastrointest Surg, 2021, 25(1): 104-111. DOI: 10.1007/s11605-019-04503-7.
[11]
HUANG Y, ZHANG Z Y, ZHOU Y F, et al. Should we apply sorafenib in hepatocellular carcinoma patients with microvascular invasion after curative hepatectomy?[J]. Onco Targets Ther, 2019, 12: 541-548. DOI: 10.2147/OTT.S187357.
[12]
CHEN Z H, ZHANG X P, FENG J K, et al. Actual long-term survival in hepatocellular carcinoma patients with microvascular invasion: a multicenter study from China[J]. Hepatol Int, 2021, 15(3): 642-650. DOI: 10.1007/s12072-021-10174-x.
[13]
LEE S, KANG T W, SONG K D, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
[14]
NITTA H, ALLARD M A, SEBAGH M, et al. Predictive model for microvascular invasion of hepatocellular carcinoma among candidates for either hepatic resection or liver transplantation[J]. Surgery, 2019, 165(6): 1168-1175. DOI: 10.1016/j.surg.2019.01.012.
[15]
HAN J, LI Z L, XING H, et al. The impact of resection margin and microvascular invasion on long-term prognosis after curative resection of hepatocellular carcinoma: a multi-institutional study[J]. HPB, 2019, 21(8): 962-971. DOI: 10.1016/j.hpb.2018.11.005.
[16]
PAWLIK T M, GLEISNER A L, ANDERS R A, et al. Preoperative assessment of hepatocellular carcinoma tumor grade using needle biopsy: implications for transplant eligibility[J]. Ann Surg, 2007, 245(3): 435-442. DOI: 10.1097/01.sla.0000250420.73854.ad.
[17]
RENZULLI M, BROCCHI S, CUCCHETTI A, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?[J]. Radiology, 2016, 279(2): 432-442. DOI: 10.1148/radiol.2015150998.
[18]
BARRAGÁN-MONTERO A, JAVAID U, VALDÉS G, et al. Artificial intelligence and machine learning for medical imaging: A technology review[J]. Phys Med, 2021, 83: 242-256. DOI: 10.1016/j.ejmp.2021.04.016.
[19]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[20]
VISVIKIS D, LE REST C C, JAOUEN V, et al. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13): 2630-2637. DOI: 10.1007/s00259-019-04373-w.
[21]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[22]
ZHOU H Y, CHENG J M, CHEN T W, et al. CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J/OL]. Clinics (Sao Paulo), 2023, 78: 100264 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/37562218/. DOI: 10.1016/j.clinsp.2023.100264.
[23]
XU T F, REN L Y, LIAO M J, et al. Preoperative radiomics analysis of contrast-enhanced CT for microvascular invasion and prognosis stratification in hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2022, 9: 189-201. DOI: 10.2147/JHC.S356573.
[24]
WANG F, CHENG M, DU B B, et al. Predicting microvascular invasion in small (≤5 cm) hepatocellular carcinomas using radiomics-based peritumoral analysis[J]. Insights Imag, 2024, 15(1): 90 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/38530498/. DOI: 10.1186/s13244-024-01649-0.
[25]
ZHANG W L, YANG R M, LIANG F R, et al. Prediction of microvascular invasion in hepatocellular carcinoma with a multi-disciplinary team-like radiomics fusion model on dynamic contrast-enhanced computed tomography[J/OL]. Front Oncol, 2021, 11: 660629 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/33796471/. DOI: 10.3389/fonc.2021.660629.
[26]
XIONG L, PENG Y, LI S, et al. Machine learning-based radiomics for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Int J Radiat Res, 2023, 21(3): 383-390. DOI: 10.61186/ijrr.21.3.383.
[27]
MA X H, WEI J W, GU D S, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT[J]. Eur Radiol, 2019, 29(7): 3595-3605. DOI: 10.1007/s00330-018-5985-y.
[28]
TONG X, LI J. Noninvasively predict the micro-vascular invasion and histopathological grade of hepatocellular carcinoma with CT-derived radiomics[J/OL]. Eur J Radiol Open, 2022, 9: 100424 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/35600083/. DOI: 10.1016/j.ejro.2022.100424.
[29]
HE X J, XU Y, ZHOU C Y, et al. Prediction of microvascular invasion and pathological differentiation of hepatocellular carcinoma based on a deep learning model[J/OL]. Eur J Radiol, 2024, 172: 111348 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/38325190/. DOI: 10.1016/j.ejrad.2024.111348.
[30]
CAO L, WANG Q, HONG J, et al. MVI-TR: a transformer-based deep learning model with contrast-enhanced CT for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J/OL]. Cancers (Basel), 2023, 15(5): 1538 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/36900327/. DOI: 10.3390/cancers15051538.
[31]
WANG L, WU M, LI R, et al. MVI-mind: a novel deep-learning strategy using computed tomography (CT)-based radiomics for end-to-end high efficiency prediction of microvascular invasion in hepatocellular carcinoma[J/OL]. Cancers (Basel), 2022, 14(12): 2956 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/35740620/. DOI: 10.3390/cancers14122956.
[32]
HU J H, DENG X, PAN Y K, et al. Temporal encoded deep learning radiomics model for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. J Med Biol Eng, 2023, 43(5): 623-632. DOI: 10.1007/s40846-023-00829-5.
[33]
YANG Y H, ZHOU Y, ZHOU C, et al. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma[J]. Eur J Surg Oncol, 2022, 48(5): 1068-1077. DOI: 10.1016/j.ejso.2021.11.120.
[34]
LI X M, QI Z D, DU H Y, et al. Deep convolutional neural network for preoperative prediction of microvascular invasion and clinical outcomes in patients with HCCs[J]. Eur Radiol, 2022, 32(2): 771-782. DOI: 10.1007/s00330-021-08198-w.
[35]
WANG Q H, ZHOU Y J, YANG H A, et al. MRI-based clinical-radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma[J]. Med Phys, 2024, 51(7): 4673-4686. DOI: 10.1002/mp.17087.
[36]
ZHOU H Y, CHENG J M, CHEN T W, et al. A systematic review and meta-analysis of MRI radiomics for predicting microvascular invasion in patients with hepatocellular carcinoma[J]. Curr Med Imaging, 2024, 20: 1-11. DOI: 10.2174/0115734056256824231204073534.
[37]
MENG A, ZHUANG Y P, HUANG Q, et al. Development and validation of a cross-modality tensor fusion model using multi-modality MRI radiomics features and clinical radiological characteristics for the prediction of microvascular invasion in hepatocellular carcinoma[J/OL]. Eur J Surg Oncol, 2025, 51(1): 109364 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/39536525/. DOI: 10.1016/j.ejso.2024.109364.
[38]
ZHONG Y, CHEN L F, DING F D, et al. Assessing microvascular invasion in HBV-related hepatocellular carcinoma: an online interactive nomogram integrating inflammatory markers, radiomics, and convolutional neural networks[J/OL]. Front Oncol, 2024, 14: 1401095 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/39351352/. DOI: 10.3389/fonc.2024.1401095.
[39]
GENG Z J, WANG S T, MA L D, et al. Prediction of microvascular invasion in hepatocellular carcinoma patients with MRI radiomics based on susceptibility weighted imaging and T2-weighted imaging[J]. Radiol Med, 2024, 129(8): 1130-1142. DOI: 10.1007/s11547-024-01845-4.
[40]
ZHANG H D, LI X M, ZHANG Y H, et al. Evaluation of preoperative microvascular invasion in hepatocellular carcinoma through multidimensional parameter combination modeling based on Gd-EOB-DTPA MRI[J]. J Clin Transl Hepatol, 2023, 11(2): 350-359. DOI: 10.14218/JCTH.2021.00546.
[41]
HU F, ZHANG Y H, LI M, et al. Preoperative prediction of microvascular invasion risk grades in hepatocellular carcinoma based on tumor and peritumor dual-region radiomics signatures[J/OL]. Front Oncol, 2022, 12: 853336 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/35392229/. DOI: 10.3389/fonc.2022.853336.
[42]
GAO L M, XIONG M L, CHEN X J, et al. Multi-region radiomic analysis based on multi-sequence MRI can preoperatively predict microvascular invasion in hepatocellular carcinoma[J/OL]. Front Oncol, 2022, 12: 818681 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/35574328/. DOI: 10.3389/fonc.2022.818681.
[43]
WANG F, ZHAN G, CHEN Q Q, et al. Multitask deep learning for prediction of microvascular invasion and recurrence-free survival in hepatocellular carcinoma based on MRI images[J]. Liver Int, 2024, 44(6): 1351-1362. DOI: 10.1111/liv.15870.
[44]
YOU H, WANG J, MA R, et al. Clinical interpretability of deep learning for predicting microvascular invasion in hepatocellular carcinoma by using attention mechanism[J/OL]. Bioengineering (Basel), 2023, 10(8): 948 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/37627833/. DOI: 10.3390/bioengineering10080948.
[45]
WANG Y, ZHU G Q, YANG R, et al. Deciphering intratumoral heterogeneity of hepatocellular carcinoma with microvascular invasion with radiogenomic analysis[J/OL]. J Transl Med, 2023, 21(1): 734 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/37853415/. DOI: 10.1186/s12967-023-04586-6.
[46]
XIAO Q, ZHU W, TANG H, et al. Ultrasound radiomics in the prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J/OL]. Heliyon, 2023, 9(6): e16997 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/37332935/. DOI: 10.1016/j.heliyon.2023.e16997.
[47]
ZHANG W B, GUO Q H, ZHU Y L, et al. Cross-institutional evaluation of deep learning and radiomics models in predicting microvascular invasion in hepatocellular carcinoma: validity, robustness, and ultrasound modality efficacy comparison[J/OL]. Cancer Imaging, 2024, 24(1): 142 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/39438929/. DOI: 10.1186/s40644-024-00790-9.
[48]
ZHANG Y, WEI Q, HUANG Y, et al. Deep learning of liver contrast-enhanced ultrasound to predict microvascular invasion and prognosis in hepatocellular carcinoma[J/OL]. Front Oncol, 2022, 12: 878061 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/35875110/. DOI: 10.3389/fonc.2022.878061.
[49]
DONG Y, ZUO D, QIU Y J, et al. Preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma based on kupffer phase radiomics features of sonazoid contrast-enhanced ultrasound (SCEUS): a prospective study[J]. Clin Hemorheol Microcirc, 2022, 81(1): 97-107. DOI: 10.3233/CH-211363.
[50]
ZHANG D, WEI Q, WU G G, et al. Preoperative prediction of microvascular invasion in patients with hepatocellular carcinoma based on radiomics nomogram using contrast-enhanced ultrasound[J/OL]. Front Oncol, 2021, 11: 709339 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/33796471/. DOI: 10.3389/fonc.2021.709339.
[51]
DONG Y, ZHOU L, XIA W, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma: initial application of a radiomic algorithm based on grayscale ultrasound images[J/OL]. Front Oncol, 2020, 10: 353 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/32266138/. DOI: 10.3389/fonc.2020.00353.
[52]
HU H T, WANG Z, HUANG X W, et al. Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma[J]. Eur Radiol, 2019, 29(6): 2890-2901. DOI: 10.1007/s00330-018-5797-0.
[53]
DONG Y, WANG Q M, LI Q, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma: radiomics algorithm based on ultrasound original radio frequency signals[J/OL]. Front Oncol, 2019, 9: 1203 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/31799183/. DOI: 10.3389/fonc.2019.01203.
[54]
ZHENG R Y, ZHANG X E, LIU B X, et al. Comparison of non-radiomics imaging features and radiomics models based on contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma within 5 cm[J]. Eur Radiol, 2023, 33(9): 6462-6472. DOI: 10.1007/s00330-023-09789-5.
[55]
LI Y C, ZHANG Y, FANG Q, et al. Radiomics analysis of [18F] FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma[J]. Eur J Nucl Med Mol Imaging, 2021, 48(8): 2599-2614. DOI: 10.1007/s00259-020-05119-9.
[56]
YE Z J, ZHANG J, WU N, et al. PET-guided attention for prediction of microvascular invasion in preoperative hepatocellular carcinoma on PET/CT[J]. Ann Nucl Med, 2023, 37(4): 238-245. DOI: 10.1007/s12149-023-01822-3.
[57]
SHI H Z, DUAN Y, SHI J, et al. Role of preoperative prediction of microvascular invasion in hepatocellular carcinoma based on the texture of FDG PET image: a comparison of quantitative metabolic parameters and MRI[J/OL]. Front Physiol, 2022, 13: 928969 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/36035488/. DOI: 10.3389/fphys.2022.928969.

PREV Progress in the application of peritumoral radiomics in hepatocellular carcinoma research
NEXT Research progress of artificial intelligence and radiomics in preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn