Share:
Share this content in WeChat
X
Review
Technological advances and clinical applications in the imaging diagnosis of lymphedema
OUYANG Jing  LUO Muqing  ZHANG Kun 

Cite this article as: OUYANG J, LUO M Q, ZHANG K. Technological advances and clinical applications in the imaging diagnosis of lymphedema[J]. Chin J Magn Reson Imaging, 2025, 16(3): 216-221. DOI:10.12015/issn.1674-8034.2025.03.037.


[Abstract] Lymphedema seriously affects the quality of life of patients, and its early diagnosis is crucial for effective treatment and improved prognosis, in which imaging techniques play a key role in the diagnosis and evaluation of this disease. However, the clinical scenarios for different imaging techniques and their specific applications have not yet been fully elucidated. The future should focus on developing novel contrast agents to enhance image visualization, advancing the use of artificial intelligence in the diagnosis and staging of lymphedema, and facilitating the integration of multi-imaging techniques with intelligent advances. This article reviews the current research progress and clinical applications of multiple diagnostic imaging techniques for lymphedema, and systematically analyzes the advantages and limitations of these techniques. The aim of this paper is to provide objective theoretical support for the clinical precision diagnosis and treatment of lymphedema, and to provide reference for the development direction of imaging diagnostic technology for lymphedema, with a view to improving the quality of life of patients and optimizing the therapeutic effect.
[Keywords] lymphedema;breast cancer;magnetic resonance imaging;ultrasound;radionuclide lymphography;clinical application

OUYANG Jing   LUO Muqing   ZHANG Kun*  

Department of Radiology, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China

Corresponding author: ZHANG K, E-mail: kun_zhang0102@163.com

Conflicts of interest   None.

Received  2024-10-25
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.03.037
Cite this article as: OUYANG J, LUO M Q, ZHANG K. Technological advances and clinical applications in the imaging diagnosis of lymphedema[J]. Chin J Magn Reson Imaging, 2025, 16(3): 216-221. DOI:10.12015/issn.1674-8034.2025.03.037.

[1]
LEE E, BIKO D M, SHERK W, et al. Understanding lymphatic anatomy and abnormalities at imaging[J]. Radiographics, 2022, 42(2): 487-505. DOI: 10.1148/rg.210104.
[2]
SUDDUTH C L, GREENE A K. Lymphedema and obesity[J/OL]. Cold Spring Harb Perspect Med, 2022, 12(5): a041176 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/35074795/. DOI: 10.1101/cshperspect.a041176.
[3]
BERNAS M, THIADENS S R J, STEWART P, et al. Secondary lymphedema from cancer therapy[J]. Clin Exp Metastasis, 2022, 39(1): 239-247. DOI: 10.1007/s10585-021-10096-w.
[4]
SIOTOS C, ARNOLD S H, SEU M, et al. Breast cancer-related lymphedema: a comprehensive analysis of risk factors[J]. J Surg Oncol, 2024, 130(8): 1521-1531. DOI: 10.1002/jso.27841.
[5]
PICONE V, VILLANI A, FEO F, et al. A case of multiple basal cell carcinomas in an immunocompromised skin district: The aetiopathogenetic role of congenital lymphqedema[J/OL]. Australas J Dermatol, 2023, 64(3): e313-e315 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/37114671/. DOI: 10.1111/ajd.14069.
[6]
WANG Y T, LI X L. Current status and progress in the treatment of lower limb lymphedema in cervical cancer[J]. Chin Foreign Med Res, 2024, 22(2): 163-167. DOI: 10.14033/j.cnki.cfmr.2024.02.041.
[7]
ROCKSON S G. Advances in lymphedema[J]. Circ Res, 2021, 128(12): 2003-2016. DOI: 10.1161/CIRCRESAHA.121.318307.
[8]
POLOMSKA A K, PROULX S T. Imaging technology of the lymphatic system[J/OL]. Adv Drug Deliv Rev, 2021, 170: 294-311 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/32891679/. DOI: 10.1016/j.addr.2020.08.013.
[9]
GÓMEZ F M, BAETENS T R, SANTOS E, et al. Correction: interventional solutions for post-surgical problems: a lymphatic leaks review[J/OL]. CVIR Endovasc, 2024, 7(1): 68 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/39287900/. DOI: 10.1186/s42155-024-00483-1.
[10]
QUARTUCCIO N, GARAU L M, ARNONE A, et al. Comparison of 99mTc-labeled colloid SPECT/CT and planar lymphoscintigraphy in sentinel lymph node detection in patients with melanoma: a meta-analysis[J/OL]. J Clin Med, 2020, 9(6): 1680 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/32498217/. DOI: 10.3390/jcm9061680.
[11]
HASSANEIN A H, MACLELLAN R A, GRANT F D, et al. Diagnostic accuracy of lymphoscintigraphy for lymphedema and analysis of false-negative tests[J/OL]. Plast Reconstr Surg Glob Open, 2017, 5(7): e1396 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/28831342/. DOI: 10.1097/GOX.0000000000001396.
[12]
PAPPALARDO M, LIN C, HO O A, et al. Staging and clinical correlations of lymphoscintigraphy for unilateral gynecological cancer-related lymphedema[J]. J Surg Oncol, 2020, 121(3): 422-434. DOI: 10.1002/jso.25817.
[13]
YOON J A, SHIN M J, SHIN Y B, et al. Correlation of ICG lymphography and lymphoscintigraphy severity stage in secondary upper limb lymphedema[J]. J Plast Reconstr Aesthet Surg, 2020, 73(11): 1982-1988. DOI: 10.1016/j.bjps.2020.08.055.
[14]
GALLAGHER K K, LOPEZ M, ILES K, et al. Surgical approach to lymphedema reduction[J/OL]. Curr Oncol Rep, 2020, 22(10): 97 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/32720071/. DOI: 10.1007/s11912-020-00961-4.
[15]
HONG G, LEE K, HAN S, et al. Lymphatic remapping by long-term lymphoscintigraphy follow-up in secondary lymphedema after breast cancer surgery[J/OL]. Sci Rep, 2024, 14(1): 728 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/38184673/. DOI: 10.1038/s41598-023-50558-7.
[16]
MIHARA M, HARA H, NARUSHIMA M, et al. Indocyanine green lymphography is superior to lymphoscintigraphy in imaging diagnosis of secondary lymphedema of the lower limbs[J]. J Vasc Surg Venous Lymphat Disord, 2013, 1(2): 194-201. DOI: 10.1016/j.jvsv.2012.07.011.
[17]
OGATA F, NARUSHIMA M, MIHARA M, et al. Intraoperative lymphography using indocyanine green dye for near-infrared fluorescence labeling in lymphedema[J]. Ann Plast Surg, 2007, 59(2): 180-184. DOI: 10.1097/01.sap.0000253341.70866.54.
[18]
VISCONTI G, HAYASHI A, BIANCHI A, et al. Lymphaticovenular anastomosis for advanced-stage peripheral lymphedema: expanding indication and introducing the hand/foot sign[J]. J Plast Reconstr Aesthet Surg, 2022, 75(7): 2153-2163. DOI: 10.1016/j.bjps.2022.02.012.
[19]
CHIOFALO B, LAGANÀ A S, GHEZZI F, et al. Beyond sentinel lymph node: outcomes of indocyanine green-guided pelvic lymphadenectomy in endometrial and cervical cancer[J/OL]. Int J Environ Res Public Health, 2023, 20(4): 3476 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/36834170/. DOI: 10.3390/ijerph20043476.
[20]
BOYAGES J, KOELMEYER L A, SUAMI H, et al. The ALERT model of care for the assessment and personalized management of patients with lymphoedema[J]. Br J Surg, 2020, 107(3): 238-247. DOI: 10.1002/bjs.11368.
[21]
SHINAOKA A, KAMIYAMA K, YAMADA K, et al. A new severity classification of lower limb secondary lymphedema based on lymphatic pathway defects in an indocyanine green fluorescent lymphography study[J/OL]. Sci Rep, 2022, 12(1): 309 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/35013357/. DOI: 10.1038/s41598-021-03637-6.
[22]
CHEN D C, SANDHU D S, O'BRIEN J S, et al. Indocyanine green in minimally and maximally invasive genitourinary cancer surgery[J]. BJU Int, 2024, 133(4): 400-402. DOI: 10.1111/bju.16284.
[23]
DUAN M. Preparation and imaging study of lymphatic targeting nano-imaging agent based on indocyanine green[D]. Changchun: Jilin University, 2022. DOI: 10.27162/d.cnki.gjlin.2022.002225.
[24]
LIU M, LIU S Y, ZHAO Q P, et al. Using the indocyanine green (ICG) lymphography to screen breast cancer patients at high risk for lymphedema[J/OL]. Diagnostics, 2022, 12(4): 983 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/35454031/. DOI: 10.3390/diagnostics12040983.
[25]
SORAN A, SENOL K, LUPINACCI K. Navigating lymphedema: the impact of indocyanine green lymphography on personalized therapy outcomes in breast cancer patients[J]. Clin Breast Cancer, 2025, 25(1): 19-26. DOI: 10.1016/j.clbc.2024.10.010.
[26]
LAJE P, DORI Y, SMITH C, et al. Surgical management of central lymphatic conduction disorders: a review[J]. J Pediatr Surg, 2024, 59(2): 281-289. DOI: 10.1016/j.jpedsurg.2023.10.039.
[27]
GJORUP C A, HENDEL H W, KLAUSEN T W, et al. Reference values for assessment of unilateral limb lymphedema with dual-energy X-ray absorptiometry[J]. Lymphat Res Biol, 2018, 16(1): 75-84. DOI: 10.1089/lrb.2016.0064.
[28]
DYLKE E S, WARD L C, MEERKIN J D, et al. Tissue composition changes and secondary lymphedema[J]. Lymphat Res Biol, 2013, 11(4): 211-218. DOI: 10.1089/lrb.2013.0018.
[29]
AMMITZBØLL G, HYLDEGAARD O, FORCHHAMMER M, et al. Effects of an early intervention with Hyperbaric Oxygen Treatment on arm lymphedema and quality of life after breast cancer: an explorative clinical trial[J/OL]. Support Care Cancer, 2023, 31(5): 313 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/37126076/. DOI: 10.1007/s00520-023-07774-8.
[30]
JØRGENSEN M G, HERMANN A P, MADSEN A R, et al. Cellulitis is associated with severe breast cancer-related lymphedema: an observational study of tissue composition[J/OL]. Cancers, 2021, 13(14): 3584 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/34298799/. DOI: 10.3390/cancers13143584.
[31]
HUANG Y M, LIAO J Y, CHEN Z Y. Progresses of ultrasonic technology in breast cancer-related lymphedema[J]. Chin J Med Imag Technol, 2021, 37(11): 1748-1751. DOI: 10.13929/j.issn.1003-3289.2021.11.038.
[32]
TASSENOY A, DE STRIJCKER D, ADRIAENSSENS N, et al. The use of noninvasive imaging techniques in the assessment of secondary lymphedema tissue changes as part of staging lymphedema[J]. Lymphat Res Biol, 2016, 14(3): 127-133. DOI: 10.1089/lrb.2016.0011.
[33]
RICCI V, RICCI C, GERVASONI F, et al. From physical to ultrasound examination in lymphedema: a novel dynamic approach[J]. J Ultrasound, 2022, 25(3): 757-763. DOI: 10.1007/s40477-021-00633-4.
[34]
HAYASHI A, YAMAMOTO T, YOSHIMATSU H, et al. Ultrasound visualization of the lymphatic vessels in the lower leg[J]. Microsurgery, 2016, 36(5): 397-401. DOI: 10.1002/micr.22414.
[35]
POLAT A V, OZTURK M, POLAT A K, et al. Efficacy of ultrasound and shear wave elastography for the diagnosis of breast cancer-related lymphedema[J]. J Ultrasound Med, 2020, 39(4): 795-803. DOI: 10.1002/jum.15162.
[36]
HAO Y X, SUN Y, LEI Y T, et al. Percutaneous Sonazoid-enhanced ultrasonography combined with in vitro verification for detection and characterization of sentinel lymph nodes in early breast cancer[J]. Eur Radiol, 2021, 31(8): 5894-5901. DOI: 10.1007/s00330-020-07639-2.
[37]
BIANCHI A, VISCONTI G, HAYASHI A, et al. Ultra-High frequency ultrasound imaging of lymphatic channels correlates with their histological features: a step forward in lymphatic surgery[J]. J Plast Reconstr Aesthet Surg, 2020, 73(9): 1622-1629. DOI: 10.1016/j.bjps.2020.05.053.
[38]
KIM C, LEE C, QUEIROS I, et al. Noncontrast ultra-high-frequency ultrasound for preoperative lymphovenous mapping in patients undergoing lymphaticovenous anastomosis surgery for extremity lymphedema[J/OL]. Am J Roentgenol, 2025: 1-3 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/39440799/. DOI: 10.2214/ajr.24.32001.
[39]
ALMUJALLY A, SULIEMAN A, CALLIADA F. Patients radiation risks from computed tomography lymphography[J/OL]. J Clin Imaging Sci, 2020, 10: 46 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/32874751/. DOI: 10.25259/JCIS_92_2020.
[40]
KIM M, SUH D H, YANG E J, et al. Identifying risk factors for occult lower extremity lymphedema using computed tomography in patients undergoing lymphadenectomy for gynecologic cancers[J]. Gynecol Oncol, 2017, 144(1): 153-158. DOI: 10.1016/j.ygyno.2016.10.037.
[41]
YOON H J, WOO K J, KIM J Y, et al. The added value of SPECT/CT lymphoscintigraphy in the initial assessment of secondary extremity lymphedema patients[J/OL]. Sci Rep, 2023, 13(1): 19494 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/37945581/. DOI: 10.1038/s41598-023-44471-2.
[42]
YOO J S, CHUNG S H, LIM M C, et al. Computed tomography-based quantitative assessment of lower extremity lymphedema following treatment for gynecologic cancer[J/OL]. J Gynecol Oncol, 2017, 28(2): e18 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/28028991/. DOI: 10.3802/jgo.2017.28.e18.
[43]
MASIA J, PONS G, NARDULLI M L. Combined surgical treatment in breast cancer-related lymphedema[J]. J Reconstr Microsurg, 2016, 32(1): 16-27. DOI: 10.1055/s-0035-1544182.
[44]
GENG M F, GENG M S, WEI R, et al. Artificial intelligence neural network analysis and application of CT imaging features to predict lymph node metastasis in non-small cell lung cancer[J]. J Thorac Dis, 2022, 14(11): 4384-4394. DOI: 10.21037/jtd-22-1511.
[45]
LV J, ROY S, XIE M, et al. Contrast agents of magnetic resonance imaging and future perspective[J/OL]. Nanomaterials, 2023, 13(13): 2003 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/37446520/. DOI: 10.3390/nano13132003.
[46]
ZHU Z, LIAO H, SU D K. Application advancements of MR lymphography in lymphedema of extremities[J]. Chin J Interv Imag Ther, 2021, 18(4): 247-250. DOI: 10.13929/j.issn.1672-8475.2021.04.013.
[47]
PAPPALARDO M, CHENG M H. Lymphoscintigraphy for the diagnosis of extremity lymphedema: current controversies regarding protocol, interpretation, and clinical application[J]. J Surg Oncol, 2020, 121(1): 37-47. DOI: 10.1002/jso.25526.
[48]
VARAGUR K, SHETTY A S, SAOUD K, et al. Association between bioimpedance spectroscopy and magnetic resonance lymphangiography in the diagnosis and assessment of lymphedema[J]. J Reconstr Microsurg, 2024, 40(3): 177-185. DOI: 10.1055/a-2102-0261.
[49]
RANE S, DONAHUE P M C, TOWSE T, et al. Clinical feasibility of noninvasive visualization of lymphatic flow with principles of spin labeling MR imaging: implications for lymphedema assessment[J]. Radiology, 2013, 269(3): 893-902. DOI: 10.1148/radiol.13120145.
[50]
MITSUMORI L M, MCDONALD E S, NELIGAN P C, et al. Peripheral magnetic resonance lymphangiography: techniques and applications[J]. Tech Vasc Interv Radiol, 2016, 19(4): 262-272. DOI: 10.1053/j.tvir.2016.10.007.
[51]
KAYADIBI Y, KıLıÇ F, YıLMAZ R, et al. Second look ultrasonography-guided breast biopsy with magnetic resonance imaging confirmation by intralesional contrast injection[J]. Eur J Breast Health, 2020, 17(1): 1-9. DOI: 10.5152/ejbh.2020.5663.
[52]
CHAVHAN G B, LAM C Z, GREER M C, et al. Magnetic resonance lymphangiography[J]. Radiol Clin North Am, 2020, 58(4): 693-706. DOI: 10.1016/j.rcl.2020.02.002.
[53]
CRESCENZI R, DONAHUE P M C, GARZA M, et al. Elevated magnetic resonance imaging measures of adipose tissue deposition in women with breast cancer treatment-related lymphedema[J]. Breast Cancer Res Treat, 2022, 191(1): 115-124. DOI: 10.1007/s10549-021-06419-w.
[54]
SALEHI B P, SIBLEY R C, FRIEDMAN R, et al. MRI of lymphedema[J]. J Magn Reson Imaging, 2023, 57(4): 977-991. DOI: 10.1002/jmri.28496.
[55]
KIM G, SMITH M P, DONOHOE K J, et al. MRI staging of upper extremity secondary lymphedema: correlation with clinical measurements[J]. Eur Radiol, 2020, 30(8): 4686-4694. DOI: 10.1007/s00330-020-06790-0.
[56]
CELLINA M, GIBELLI D, MARTINENGHI C, et al. Noncontrast magnetic resonance lymphography in secondary lymphedema due to prostate cancer[J]. Lymphat Res Biol, 2021, 19(4): 355-361. DOI: 10.1089/lrb.2020.0034.
[57]
ZHANG Y, TAN Y Q, CHEN J, et al. The role of MRI in the diagnosis and management of tracheal diverticulum[J/OL]. BMC Med Imaging, 2022, 22(1): 74 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/35448959/. DOI: 10.1186/s12880-022-00802-9.
[58]
CELLINA M, GIBELLI D, FLORIDI C, et al. Volumetric analysis of non-contrast Magnetic Resonance Lymphangiography in patients affected by lower extremities primary lymphedema[J]. Radiol Med, 2020, 125(4): 432-435. DOI: 10.1007/s11547-019-01122-9.
[59]
QUARTUCCIO N, AGUGLIARO F, ALONGI P, et al. A systematic review comparing lymphoscintigraphy and magnetic resonance imaging techniques in the assessment of peripheral lymphedema[J]. Curr Med Imaging, 2022, 19(5): 469-475. DOI: 10.2174/1573405618666220525141721.
[60]
MARKARIAN B, TORO C, MOREIRA K, et al. Assessment modalities for lower extremity edema, lymphedema, and lipedema: a scoping review[J/OL]. Cureus, 2024, 16(3): e55906 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/38601427/. DOI: 10.7759/cureus.55906.
[61]
HAO Y P, LIU Q Q, LI R W, et al. Research progress of imageology and digital pathology in cervical cancer based on deep learning technology[J]. Chin J Pract Gynecol Obstet, 2023, 39(6): 665-668. DOI: 10.19538/j.fk2023060120.
[62]
TIMAKOVA A, ANANEV V, FAYZULLIN A, et al. Artificial intelligence assists in the detection of blood vessels in whole slide images: practical benefits for oncological pathology[J/OL]. Biomolecules, 2023, 13(9): 1327 [2024-10-24]. https://pubmed.ncbi.nlm.nih.gov/37759727/. DOI: 10.3390/biom13091327.
[63]
RAMIREZ-SUAREZ K I, TIERRADENTRO-GARCIA L O, SMITH C L, et al. Dynamic contrast-enhanced magnetic resonance lymphangiography[J]. Pediatr Radiol, 2022, 52(2): 285-294. DOI: 10.1007/s00247-021-05051-6.

PREV Research progress of artificial intelligence and radiomics in preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma
NEXT Progress in the application of habitat imaging in multi-system tumors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn