Share:
Share this content in WeChat
X
Review
Progress in the application of habitat imaging in multi-system tumors
YANG Zeting  WU Hui  GAO Hongyan  LIU Na  LIU Jiarui 

Cite this article as: YANG Z T, WU H, GAO H Y, et al. Progress in the application of habitat imaging in multi-system tumors[J]. Chin J Magn Reson Imaging, 2025, 16(3): 222-227. DOI:10.12015/issn.1674-8034.2025.03.038.


[Abstract] Based on differences in tumor pathology, blood perfusion, molecular characteristics, and other differences, habitat imaging technology can not only characterize the internal spatial heterogeneity of tumors, but also map the differences between pathophysiological microenvironment characteristics and molecular biological behaviors non-invasive, providing visual basis for revealing tumor evolution mechanism and accurate diagnosis and treatment. In this review, habitat imaging technology and its research progress in multi-system tumors such as nervous system, respiratory system, digestive system and reproductive system were reviewed, and the application value of this technology in prognostic prediction, therapeutic response evaluation and molecular characteristics prediction was systematically reviewed. In the future, multi-modal image fusion, longitudinal dynamic tracking of tumor evolution and artificial intelligence-assisted analysis will become breakthroughs, which is expected to promote the transformation of habitat imaging from a research tool to a clinical routine, and finally realize the precision and individualized diagnosis and treatment of tumors.
[Keywords] habitat imaging;diagnosis;genetic typing;prognosis;magnetic resonance imaging

YANG Zeting   WU Hui*   GAO Hongyan   LIU Na   LIU Jiarui  

Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Corresponding author: WU H, E-mail: terrywuhui@sina.com

Conflicts of interest   None.

Received  2024-12-08
Accepted  2025-03-07
DOI: 10.12015/issn.1674-8034.2025.03.038
Cite this article as: YANG Z T, WU H, GAO H Y, et al. Progress in the application of habitat imaging in multi-system tumors[J]. Chin J Magn Reson Imaging, 2025, 16(3): 222-227. DOI:10.12015/issn.1674-8034.2025.03.038.

[1]
KLIONSKY D J, ABDEL-AZIZ A K, ABDELFATAH S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1[J]. Autophagy, 2021, 17(1): 1-382. DOI: 10.1080/15548627.2020.1797280.
[2]
YANG Y, HAN Y, ZHAO S, et al. Spatial heterogeneity of edema region uncovers survival-relevant habitat of Glioblastoma[J/OL]. Eur J Radiol, 2022, 154: 110423 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/35777079/. DOI: 10.1016/j.ejrad.2022.110423.
[3]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[4]
GREAVES M. Evolutionary determinants of cancer[J]. Cancer Discov, 2015, 5(8): 806-820. DOI: 10.1158/2159-8290.CD-15-0439.
[5]
WU J, CUI Y, SUN X L, et al. Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways[J]. Clin Cancer Res, 2017, 23(13): 3334-3342. DOI: 10.1158/1078-0432.CCR-16-2415.
[6]
XIE P Y, HUANG Q T, ZHENG L T, et al. Sub-region based histogram analysis of amide proton transfer-weighted MRI for predicting tumor budding grade in rectal adenocarcinoma: a prospective study[J]. Eur Radiol, 2025, 35(3): 1382-1393. DOI: 10.1007/s00330-024-11172-x.
[7]
HUANG Y H, SHI Z Y, ZHU T, et al. Longitudinal MRI-driven multi-modality approach for predicting pathological complete response and B cell infiltration in breast cancer[J/OL]. Adv Sci, 2025: e2413702[2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/39921294/. DOI: 10.1002/advs.202413702.
[8]
CHEN X P. Prediction of HER2 expression in bone and brain metastases of breast cancer by proteomics[D]. Shenyang: China Medical University, 2023. DOI: 10.27652/d.cnki.gzyku.2023.001149.
[9]
GOH T Y, BASAH S N, YAZID H, et al. Performance analysis of image thresholding: otsu technique[J]. Measurement, 2018, 114: 298-307. DOI: 10.1016/j.measurement.2017.09.052.
[10]
LIU Y H, WANG P, WANG S Y, et al. Heterogeneity matching and IDH prediction in adult-type diffuse gliomas: a DKI-based habitat analysis[J/OL]. Front Oncol, 2023, 13: 1202170 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/38090477/. DOI: 10.3389/fonc.2023.1202170.
[11]
MU W, LIANG Y, HALL L O, et al. 18F-FDG PET/CT habitat radiomics predicts outcome of patients with cervical cancer treated with chemoradiotherapy[J/OL]. Radiol Artif Intell, 2020, 2(6): e190218 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/33937845/. DOI: 10.1148/ryai.2020190218.
[12]
WANG X H, XU C, GRZEGORZEK M, et al. Habitat radiomics analysis of pet/ct imaging in high-grade serous ovarian cancer: Application to Ki-67 status and progression-free survival[J/OL]. Front Physiol, 2022, 13: 948767 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/36091379/. DOI: 10.3389/fphys.2022.948767.
[13]
BEER L, MARTIN-GONZALEZ P, DELGADO-ORTET M, et al. Ultrasound-guided targeted biopsies of CT-based radiomic tumour habitats: technical development and initial experience in metastatic ovarian cancer[J]. Eur Radiol, 2021, 31(6): 3765-3772. DOI: 10.1007/s00330-020-07560-8.
[14]
ZHANG Y, BRADY M, SMITH S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[J]. IEEE Trans Med Imaging, 2001, 20(1): 45-57. DOI: 10.1109/42.906424.
[15]
CUI Y, THA K K, TERASAKA S, et al. Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images[J]. Radiology, 2016, 278(2): 546-553. DOI: 10.1148/radiol.2015150358.
[16]
RASMUSSEN B K, HANSEN S, LAURSEN R J, et al. Epidemiology of glioma: clinical characteristics, symptoms, and predictors of glioma patients grade I-Ⅳ in the the Danish Neuro-Oncology Registry[J]. J Neurooncol, 2017, 135(3): 571-579. DOI: 10.1007/s11060-017-2607-5.
[17]
OSTROM Q T, CIOFFI G, GITTLEMAN H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016[J]. Neuro Oncol, 2019, 21(Suppl 5): v1-v100. DOI: 10.1093/neuonc/noz150.
[18]
CUI Y, REN S J, THA K K, et al. Volume of high-risk intratumoral subregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma[J]. Eur Radiol, 2017, 27(9): 3583-3592. DOI: 10.1007/s00330-017-4751-x.
[19]
DEXTRAZE K, SAHA A, KIM D, et al. Spatial habitats from multiparametric MR imaging are associated with signaling pathway activities and survival in glioblastoma[J]. Oncotarget, 2017, 8(68): 112992-113001. DOI: 10.18632/oncotarget.22947.
[20]
LIU J C. Clinical value of MR habitat imaging in predicting molecular typing and prognosis of high-grade glioma[D]. Chongqing: Army Medical University, 2023. DOI: 10.27001/d.cnki.gtjyu.2023.000132.
[21]
TAN A C, ASHLEY D M, LÓPEZ G Y, et al. Management of glioblastoma: State of the art and future directions[J]. CA Cancer J Clin, 2020, 70(4): 299-312. DOI: 10.3322/caac.21613.
[22]
QIAO J G. Prediction of molecular characteristics and prognosis of high-grade glioma by spectral analysis based on MRI hemodynamic habitat imaging[D]. Chongqing: Army Medical University, 2023. DOI: 10.27001/d.cnki.gtjyu.2023.000133.
[23]
KIM M, PARK J E, KIM H S, et al. Spatiotemporal habitats from multiparametric physiologic MRI distinguish tumor progression from treatment-related change in post-treatment glioblastoma[J]. Eur Radiol, 2021, 31(8): 6374-6383. DOI: 10.1007/s00330-021-07718-y.
[24]
LEE D H, PARK J E, KIM N, et al. Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery[J]. Eur Radiol, 2022, 32(1): 497-507. DOI: 10.1007/s00330-021-08204-1.
[25]
LEE D H, PARK J E, KIM N, et al. Tumor habitat analysis using longitudinal physiological MRI to predict tumor recurrence after stereotactic radiosurgery for brain metastasis[J]. Korean J Radiol, 2023, 24(3): 235-246. DOI: 10.3348/kjr.2022.0492.
[26]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[27]
WU J, GENSHEIMER M F, DONG X Z, et al. Robust intratumor partitioning to identify high-risk subregions in lung cancer: a pilot study[J]. Int J Radiat Oncol Biol Phys, 2016, 95(5): 1504-1512. DOI: 10.1016/j.ijrobp.2016.03.018.
[28]
CHEN L, LIU K F, ZHAO X, et al. Habitat imaging-based 18F-FDG PET/CT radiomics for the preoperative discrimination of non-small cell lung cancer and benign inflammatory diseases[J/OL]. Front Oncol, 2021, 11: 759897 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/34692548/. DOI: 10.3389/fonc.2021.759897.
[29]
AMINU M, YADAV D, HONG L, et al. Habitat imaging biomarkers for diagnosis and prognosis in cancer patients infected with COVID-19[J/OL]. Cancers (Basel), 2022, 15(1): 275 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/36612278/. DOI: 10.3390/cancers15010275.
[30]
ZHANG Y F, CHEN J J, YANG C, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using diffusion-weighted imaging-based habitat imaging[J]. Eur Radiol, 2024, 34(5): 3215-3225. DOI: 10.1007/s00330-023-10339-2.
[31]
ZHANG Y F, YANG C, SHENG R F, et al. Predicting the recurrence of hepatocellular carcinoma (≤5 cm) after resection surgery with promising risk factors: habitat fraction of tumor and its peritumoral micro-environment[J]. Radiol Med, 2023, 128(10): 1181-1191. DOI: 10.1007/s11547-023-01695-6.
[32]
XIE C Y, YANG P F, ZHANG X B, et al. Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy[J]. EBioMedicine, 2019, 44: 289-297. DOI: 10.1016/j.ebiom.2019.05.023.
[33]
WU J, GENSHEIMER M F, ZHANG N S, et al. Tumor subregion evolution-based imaging features to assess early response and predict prognosis in oropharyngeal cancer[J]. J Nucl Med, 2020, 61(3): 327-336. DOI: 10.2967/jnumed.119.230037.
[34]
MILLER K D, NOGUEIRA L, DEVASIA T, et al. Cancer treatment and survivorship statistics, 2022[J]. CA Cancer J Clin, 2022, 72(5): 409-436. DOI: 10.3322/caac.21731.
[35]
RONSINI C, ANCHORA L P, RESTAINO S, et al. The role of semiquantitative evaluation of lympho-vascular space invasion in early stage cervical cancer patients[J]. Gynecol Oncol, 2021, 162(2): 299-307. DOI: 10.1016/j.ygyno.2021.06.002.
[36]
MARGOLIS B, CAGLE-COLON K, CHEN L, et al. Prognostic significance of lymphovascular space invasion for stage IA1 and IA2 cervical cancer[J]. Int J Gynecol Cancer, 2020, 30(6): 735-743. DOI: 10.1136/ijgc-2019-000849.
[37]
WANG S X, LIU X W, WU Y, et al. Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study[J/OL]. Front Oncol, 2023, 13: 1252074 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/37954078/. DOI: 10.3389/fonc.2023.1252074.
[38]
FANG M J, KAN Y Y, DONG D, et al. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer[J/OL]. Front Oncol, 2020, 10: 563 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/32432035/. DOI: 10.3389/fonc.2020.00563.
[39]
LI C R, TAN J, LI H Y, et al. The value of multiparametric MRI-based habitat imaging for differentiating uterine sarcomas from atypical leiomyomas: a multicentre study[J]. Abdom Radiol, 2025, 50(2): 995-1008. DOI: 10.1007/s00261-024-04539-7.
[40]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[41]
SCHLÜTER C, DUCHROW M, WOHLENBERG C, et al. The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins[J]. J Cell Biol, 1993, 123(3): 513-522. DOI: 10.1083/jcb.123.3.513.
[42]
QIU D M, CAI W Q, ZHANG Z Q, et al. High Ki-67 expression is significantly associated with poor prognosis of ovarian cancer patients: evidence from a meta-analysis[J]. Arch Gynecol Obstet, 2019, 299(5): 1415-1427. DOI: 10.1007/s00404-019-05082-3.
[43]
LIU Y X, GU Q Y, XIAO Y, et al. Prognostic value of Ki67 in epithelial ovarian cancer: post-neoadjuvant chemotherapy Ki67 combined with CA125 predicting recurrence[J]. Cancer Manag Res, 2024, 16: 761-769. DOI: 10.2147/CMAR.S469132.
[44]
BARNES B M, NELSON L, TIGHE A, et al. Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes[J/OL]. Genome Med, 2021, 13(1): 140 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/34470661/. DOI: 10.1186/s13073-021-00952-5.
[45]
ARMSTRONG D K, ALVAREZ R D, BAKKUM-GAMEZ J N, et al. Ovarian cancer, version 2.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(2): 191-226. DOI: 10.6004/jnccn.2021.0007.
[46]
BI Q, MIAO K, XU N, et al. Habitat radiomics based on MRI for predicting platinum resistance in patients with high-grade serous ovarian carcinoma: A multicenter study[J]. Acad Radiol, 2024, 31(6): 2367-2380. DOI: 10.1016/j.acra.2023.11.038.
[47]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[48]
KORDE L A, SOMERFIELD M R, CAREY L A, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13): 1485-1505. DOI: 10.1200/JCO.20.03399.
[49]
ESSERMAN L J, BERRY D A, DEMICHELE A, et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL: CALGB 150007/150012, ACRIN 6657[J]. J Clin Oncol, 2012, 30(26): 3242-3249. DOI: 10.1200/JCO.2011.39.2779.
[50]
LEE H J, LEE J H, LEE J E, et al. Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI[J/OL]. Sci Rep, 2024, 14(1): 21691 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/39289507/. DOI: 10.1038/s41598-024-72581-y.
[51]
YAO J J, JIA X H, ZHOU W, et al. Predicting axillary response to neoadjuvant chemotherapy using peritumoral and intratumoral ultrasound radiomics in breast cancer subtypes[J/OL]. iScience, 2024, 27(9): 110716 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/39280600/. DOI: 10.1016/j.isci.2024.110716.
[52]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[53]
SHI Z W, HUANG X M, CHENG Z L, et al. Erratum for: MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J/OL]. Radiology, 2023, 308(1): e239021 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/37489997/. DOI: 10.1148/radiol.239021.
[54]
WU J, CAO G H, SUN X L, et al. Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy[J]. Radiology, 2018, 288(1): 26-35. DOI: 10.1148/radiol.2018172462.
[55]
DU T M, ZHAO H D. Habitat analysis of breast cancer-enhanced MRI reflects BRCA1 mutation determined by immunohistochemistry[J/OL]. Biomed Res Int, 2022, 2022: 9623173 [2024-12-01]. https://pubmed.ncbi.nlm.nih.gov/35402620/. DOI: 10.1155/2022/9623173.
[56]
JARED WEINFURTNER R, ABDALAH M, STRINGFIELD O, et al. Quantitative changes in intratumoral habitats on MRI correlate with pathologic response in early-stage ER/PR+ HER2- breast cancer treated with preoperative stereotactic ablative body radiotherapy[J]. J Breast Imaging, 2022, 4(3): 273-284. DOI: 10.1093/jbi/wbac013.

PREV Technological advances and clinical applications in the imaging diagnosis of lymphedema
NEXT Advances in time-dependent diffusion MRI for tumor diagnosis and treatment response evaluation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn